• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Integration of homotopical and analytical methods in the frame work of diffeology

Research Project

Project/Area Number 18K03279
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionOkayama University

Principal Investigator

Shimakawa Kazuhisa  岡山大学, 自然科学研究科, 特命教授 (70109081)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords微分空間 / モデル圏 / シュワルツ超関数 / ド・ラームカレント / コロンボー代数 / カレント / de Rham複体 / ホモトピー構造
Outline of Final Research Achievements

Based on the notion of smooth homotopy, we introduced on the category of diffeological spaces a model category structure, which turns out to be Quillen equivalent to the standard Quillen model structure on the category of topological spaces. It is proved that there hold analogies to the theorems of Whitney and J. H. C. Whitehead for "smooth cell complexes" associated with the construction of our model category. We then constructed on an arbitrary diffeological space an algebra of generalized functions (called "asymptotic functions") equipped with properties similar to Schwartz distributions, and extended it to a space of morphisms (called "asymptotic maps") between diffeological spaces. The resulting category of diffeological spaces and asymptotic maps is cartesian closed, and is furnished with nice properties enabling us to construct on every diffeological space an exterior algebra containing de Rham currents as its subspace.

Academic Significance and Societal Importance of the Research Achievements

多様体の概念の高度な一般化として,幾何学の分野で注目すべき成果を挙げつつある微分空間の概念と,数理科学のみならず,物理科学や工学等の幅広い分野で重要な役割を果たしているシュワルツ超関数や,その一般化であるコロンボー代数の理論を融合発展させた研究対象を創出することによって,それ自体の理論的興味に留まらず,幅広い科学分野で新たな応用研究の発展推進に貢献することが期待できる。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (3 results)

All 2021 2020 2019

All Presentation (3 results) (of which Int'l Joint Research: 2 results,  Invited: 2 results)

  • [Presentation] Colombeau-like generalization of smooth maps between diffeological spaces2021

    • Author(s)
      島川和久
    • Organizer
      New developments of transformation groups
    • Related Report
      2020 Research-status Report
  • [Presentation] Generalized maps between diffeological spaces and their applications2020

    • Author(s)
      Kauhisa Shimakawa
    • Organizer
      Building-up Differential Homotopy Theory 2020
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Generalized functions and diffeology2019

    • Author(s)
      Kazuhisa Shimakawa
    • Organizer
      Building-up Diffeological Homotopy Theory
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi