• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Primitive forms and topological recursion

Research Project

Project/Area Number 18K03281
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionBunkyo University (2020-2023)
Kagawa University (2018-2019)

Principal Investigator

Satake Ikuo  文教大学, 教育学部, 教授 (80243161)

Co-Investigator(Kenkyū-buntansha) 藤 博之  大阪工業大学, 情報科学部, 教授 (50391719)
Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywordsフロベニウス多様体 / 位相的漸化式 / Frobenius 多様体 / コクセター変換 / 振動積分 / 行列模型 / Frobenius多様体 / 原始形式
Outline of Final Research Achievements

Principal investigator Satake approached the case where the LG model is defined by a one-variable potential with a concrete example. However the case of one-variable was solved by Milanov's discussion of primitive forms and topological recursion for Hurwitz coverings, which gave a high-species oscillatory integral representation.
In order to use the coverings obtained from periodic maps as spectral curves of the LG model defined by multivariate potentials, the theory of Good invariants was developed. This also gave a new perspective on finite mirror group invariants.
Fuji, a co-researcher of this project, studied topological recursion and clarified the physical meaning of geometric quantities such as the Masur-Veech volume, which has been studied in hyperbolic geometry.

Academic Significance and Societal Importance of the Research Achievements

位相的漸化式のアイデアは、特異点理論、振動積分、フロベニウス多様体、Gromov-Witten 不変量などミラー対称性として知られていた対応のみならず、双曲幾何学におけるMasur-Veech体積、結び目の不変量なども横断的に視野に入れることを要求しており、各分野での深いアイデアを交流させることができる。コクセター変換という、鏡映群不変式においてもその特異な位置を占める変換が、この研究成果により Frobenius 多様体の構造そのものを導くことがわかったため、今後は普遍的な内容として他分野での新たな位置づけを得ていくことは、学術的に意義があると考えている。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (17 results)

All 2024 2023 2022 2021 2019 2018 Other

All Int'l Joint Research (1 results) Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results,  Open Access: 3 results) Presentation (13 results) (of which Int'l Joint Research: 2 results,  Invited: 13 results)

  • [Int'l Joint Research] University of Melbourne(オーストラリア)

    • Related Report
      2019 Research-status Report
  • [Journal Article] Witten-Reshetikhin-Turaev Function for a Knot in Seifert Manifolds2021

    • Author(s)
      Hiroyuki Fuji, Kohei Iwaki, Hitoshi Murakami and Yuji Terashima
    • Journal Title

      Communications in Mathematical Physics

      Volume: - Issue: 1 Pages: 225-251

    • DOI

      10.1007/s00220-021-03953-y

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Reconstructing GKZ via topological recursion2019

    • Author(s)
      Hiroyuki Fuji, Kohei Iwaki, Masahide Manabe, Ikuo Satake
    • Journal Title

      Communications in Mathematical Physics

      Volume: 371 Issue: 3 Pages: 839-920

    • DOI

      10.1007/s00220-019-03590-6

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Janossy densities for chiral random matrix ensembles and their applications to two-color QCD2019

    • Author(s)
      Fuji Hiroyuki、Kanamori Issaku、Nishigaki Shinsuke M.
    • Journal Title

      Journal of High Energy Physics

      Volume: 08 Issue: 8 Pages: 053-053

    • DOI

      10.1007/jhep08(2019)053

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] On a generalization of the Masur-Veech volume via two dimensional gravities2024

    • Author(s)
      藤 博之
    • Organizer
      Topics on mathematical structures in string theory
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Coxeter 変換から定まる良い基本不変式とフロベニウス構造2023

    • Author(s)
      佐竹 郁夫
    • Organizer
      筑波大学数学域談話会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Good basic invariants for elliptic Weyl groups and Frobenius structures2022

    • Author(s)
      佐竹郁夫
    • Organizer
      Mirror symmetry and related topics, 2022
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 行列模型と位相的漸化式2022

    • Author(s)
      藤 博之
    • Organizer
      Aspects of Mirror Symmetry 2022
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 楕円ワイル群の不変式論へのアプローチ2019

    • Author(s)
      佐竹郁夫
    • Organizer
      京都大学数理解析研究所 表現論セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Frobenius manifold structure and invariant polynomials for elliptic Weyl group2019

    • Author(s)
      佐竹郁夫
    • Organizer
      研究集会「Stability condition, Frobenius Manifold and Mirror symmetry」
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Coxeter Transformation and the Frobenius structure2019

    • Author(s)
      佐竹郁夫
    • Organizer
      国際研究集会「Mirror symmetry and related topics, 2019」
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Coxeter Transformation and Frobenius manifold2019

    • Author(s)
      佐竹郁夫
    • Organizer
      高知小研究集会「非可換代数幾何学の大域的問題とその周辺」
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] ファットグラフによる RNA の擬ノット構造に関する モデル2019

    • Author(s)
      藤 博之
    • Organizer
      総研大-理研 iTHEMS 連携ワークショップ「遺伝と数理」
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] RNA を表現するファットグラフモデルと行列模型2019

    • Author(s)
      藤 博之
    • Organizer
      名古屋大学多元数理科学研究科談話会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] An approach to the invariant theory for the elliptic Weyl groups2019

    • Author(s)
      Ikuo Satake
    • Organizer
      Representation Theory Seminar, RIMS Kyoto University
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] On the Coxeter transformation for the elliptic affine root system2018

    • Author(s)
      Ikuo Satake
    • Organizer
      Kobe studio seminar
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Reconstructing GKZ via topological recursion2018

    • Author(s)
      Hiroyuki Fuji
    • Organizer
      Physics Seminar, Korea Institute of Advanced Study
    • Related Report
      2018 Research-status Report
    • Invited

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi