• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Representation theory of homotopy algebras and geometry

Research Project

Project/Area Number 18K03293
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionChiba University

Principal Investigator

Kajiura Hiroshige  千葉大学, 大学院理学研究院, 教授 (30447891)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2022: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2021: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2020: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2019: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2018: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Keywordsホモトピー代数 / ミラー対称性 / 導来圏 / 三角圏 / トーリック多様体
Outline of Final Research Achievements

Homological mirror symmetry conjecture states that the derived category of coherent sheaves on a complex manifold and the derived category of Fukaya category of the mirror dual symplectic manifold are equivalent to each other as triangulated categories. We discuss the case where a complex manifold is a toric manifold and propose a formulation of a version of homological mirror symmetry based on SYZ torus fibrations.
We in particular show explicitly this version of homological mirror symmetry when a toric manifold is a complex projective plane, etc. The derived category of coherent sheaves on a toric manifold is known to have a full exceptional collection, which implies that the derived category is generated by a directed A-infinity category. Thus, our discussions as above are interesting, too, in the sense that we obtain many examples of triangulated categotries generated by directed A-infinity categories from geometry.

Academic Significance and Societal Importance of the Research Achievements

ホモロジー的ミラー対称性は,シンプレクティック多様体と複素多様体という異なる2つの幾何の上で定まる三角圏の同値性を主張するものである。この一見異なる幾何学の間に対応があることが興味深く,現在でもホモロジー的ミラー対称性が成り立つような様々な例について議論されている。一方で,なぜそれが成り立つか,という問いに関して決定的な結果は今のところ知られていない.現在この問の解決に一番近いと思われるのがSYZトーラス束によるミラー対の構成に基づく議論であるが,この方向性では解決すべき主張の厳密な証明が難しい状況にある.本研究ではこれを複素側がトーリック多様体に限定した場合に解決する方法を提案している.

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (9 results)

All 2024 2021 2020 2019 2018

All Journal Article (4 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (4 results) (of which Int'l Joint Research: 2 results,  Invited: 4 results) Funded Workshop (1 results)

  • [Journal Article] Homological mirror symmetry of $\mathbb{F}_1$ via Morse homotopy2024

    • Author(s)
      Futaki Masahiro、Kajiura Hiroshige
    • Journal Title

      Advances in Theoretical and Mathematical Physics

      Volume: 26 Issue: 8 Pages: 2611-2637

    • DOI

      10.4310/atmp.2022.v26.n8.a5

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Fukaya categories of two-tori revisited2021

    • Author(s)
      Kajiura Hiroshige
    • Journal Title

      Journal of Geometry and Physics

      Volume: 160 Pages: 103965-103965

    • DOI

      10.1016/j.geomphys.2020.103965

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Homological mirror symmetry of CPn and their products via Morse homotopy2021

    • Author(s)
      Futaki Masahiro、Kajiura Hiroshige
    • Journal Title

      Journal of Mathematical Physics

      Volume: 62 Issue: 3 Pages: 032307-032307

    • DOI

      10.1063/5.0029165

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Cyclicity in homotopy algebras and rational homotopy theory2018

    • Author(s)
      Hiroshige Kajiura
    • Journal Title

      Georgian Mathematical Journal

      Volume: 25 Issue: 4 Pages: 545-570

    • DOI

      10.1515/gmj-2018-0058

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Wondering about an open-closed correspondence2020

    • Author(s)
      Hiroshige Kajiura
    • Organizer
      Workshop on String Field Theory and Related Aspects (online)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Homological perturbation theory in homological mirror symmetry2020

    • Author(s)
      Hiroshige Kajiura
    • Organizer
      Homotopy Algebra of Quantum Field Theory and Its Application (online)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] ホモトピー代数の幾何学への応用2019

    • Author(s)
      梶浦 宏成
    • Organizer
      ポアソン幾何とその周辺2019
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 有限次元A∞代数の表現論2018

    • Author(s)
      梶浦 宏成
    • Organizer
      第63回代数学シンポジウム
    • Related Report
      2018 Research-status Report
    • Invited
  • [Funded Workshop] Aspects of Mirror Symmetry in Chiba 20192019

    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi