Study on 3-manifolds and cohomology of subgroups of the mapping class group of a surface
Project/Area Number |
18K03310
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 11020:Geometry-related
|
Research Institution | Tokyo Denki University |
Principal Investigator |
佐藤 正寿 東京電機大学, 未来科学部, 准教授 (10632010)
|
Project Period (FY) |
2018-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | ホモロジーシリンダー / LMO関手 / Torelli群 / Reidemeisterトーション / 写像類群 / ジョンソン核 / トレリ群 / 有限型不変量 / ハンドル体写像類群 / トポロジー / 3次元多様体 |
Outline of Annual Research Achievements |
野崎雄太氏、鈴木正明氏との共同研究として、LMO関手を用いて有向曲面のホモロジーシリンダーのY降下列の次数商を調べた。特に次数6のトーション部分は位数3の元のみからなることがわかった。次数商に奇数位数が現れたのは初めてであり重要な結果であると言える。またこの次数商は曲面の写像類群の部分群である、Torelli群の降中心列の次数商と大きく関係しており、その観点からも重要な対象である。本研究の内容をまとめたプレプリントを作成していたが研究期間中には間に合わなかった。さらにこれまでに得られたLMO関手に関する研究結果について、口頭発表2件と集中講義を行った。 これ以外に、Gwenael Massuyeau氏、Quentin Faes氏との共同研究として、Torelli群の次数商に関する研究を行った。この次数商に有理数をテンソルしたものはHain、Garoufalidis-Getzler、森田-逆井-鈴木などにより高次まで調べられている。次数商そのものを整係数で調べ、特に次数2の部分を決定した。本研究の内容をまとめたプレプリントを作成していたが研究期間中には間に合わなかった。 また、研究集会「写像類群の部分群のコホモロジーと特殊線型群の表現」を開催し、Dimca-Papadima-HainのJohnson核のアーベル化の研究の紹介として口頭発表を2件行った。
|
Report
(6 results)
Research Products
(15 results)