• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Isomonodromic tau-functions and representation theory of infinite dimensional algebras

Research Project

Project/Area Number 18K03326
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionKanazawa University

Principal Investigator

Nagoya Hajime  金沢大学, 数物科学系, 教授 (80447367)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Keywordsconformal field theory / Painleve equations / Virasoro algebra / super Virasoro algebra / irregular Verma module / ネクラソフ関数 / Painleve equation / 一般化超幾何関数 / conformal block / connection formula / モノドロミー保存変形 / ヴィラソロ代数 / パンルヴェ方程式
Outline of Final Research Achievements

The purpose of this research is construction of Fourier expansions of tau functions of monodromy preserving deformation by representation theory of infinite dimensional algebras, such as Virasoro algebra. Firstly, we proved that the tau functions of the fourth and fifth Painleve equations are expressed by irregular conformal blocks using limiting precedure. Secondly, we introduce irregular vertex operators for a super Virasoro algebra and proved the decomposition of irregular Verma module of a super Virasoro algebra into an infinite sum of irregular Verma module of two Virasoro algebras. Thirdly, we gave Fourier expansions of tau functions of q-difference Painleve equations in terms of q-conformal blocks.

Academic Significance and Societal Importance of the Research Achievements

第4,5パンルヴェ方程式のタウ関数を不確定共形ブロックで表示できることを示したことは, パンルヴェ方程式と共形場理論の間にある不思議な関係の理解を深め, すべてのパンルヴェ方程式のタウ関数が共形ブロックで表示されるという予想の証明に向けて確かな礎となる. super Virasoro 代数に対して不確定頂点作用素を導入できたことによって, 一般の無限次元代数に対する不確定頂点作用素の定義、性質が明らかになりつつある.

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (16 results)

All 2021 2019 2018 Other

All Int'l Joint Research (1 results) Journal Article (6 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 5 results,  Open Access: 5 results) Presentation (9 results) (of which Int'l Joint Research: 6 results,  Invited: 5 results)

  • [Int'l Joint Research] Tours University(フランス)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Connection Problem for the Generalized Hypergeometric Function2021

    • Author(s)
      Matsuhira Yuya、Nagoya Hajime
    • Journal Title

      Funkcialaj Ekvacioj

      Volume: 64 Issue: 3 Pages: 323-348

    • DOI

      10.1619/fesi.64.323

    • NAID

      130008131802

    • ISSN
      0532-8721
    • Year and Date
      2021-12-15
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] On q-Isomonodromic Deformations and q-Nekrasov Functions2021

    • Author(s)
      Nagoya Hajime、Kanazawa University, Japan
    • Journal Title

      Symmetry, Integrability and Geometry: Methods and Applications

      Volume: 17

    • DOI

      10.3842/sigma.2021.050

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] On q-isomonodromic deformations and q-Nekrasov functions2021

    • Author(s)
      Hajime Nagoya
    • Journal Title

      Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

      Volume: -

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Combinatorial Expressions for the Tau Functions of q-Painleve V and III Equations2019

    • Author(s)
      Yuya Matsuhira and Hajime Nagoya
    • Journal Title

      Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

      Volume: 15

    • DOI

      10.3842/sigma.2019.074

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Remarks on irregular conformal blocks and Painleve III and II tau functions2019

    • Author(s)
      H. Nagoya
    • Journal Title

      Proceedings of the Meeting for Study of Number theory, Hopf algebras and Related Topics

      Volume: - Pages: 105-124

    • Related Report
      2018 Research-status Report
  • [Journal Article] Irregular conformal blocks and connection formulae for Painleve V functions2018

    • Author(s)
      O. Lisovyy, H. Nagoya, J. Roussillon
    • Journal Title

      Journal of Mathematical Physics

      Volume: 59 Issue: 9

    • DOI

      10.1063/1.5031841

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] 不確定特異点型共形ブロックとパンルヴェ方程式2021

    • Author(s)
      名古屋 創
    • Organizer
      RIMS共同研究(公開型)可積分系数理の諸相
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Irregular conformal blocks and Painleve tau functions2021

    • Author(s)
      名古屋 創
    • Organizer
      Workshop on Geometric Correspondences of Gauge Theories XI
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Irregular conformal blocks and Painleve equations2021

    • Author(s)
      名古屋 創
    • Organizer
      RIMS研究集会「完全WKB 解析, 超局所解析, パンルヴェ方程式とその周辺」
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Irregular conformal blocks and Painleve tau functions2021

    • Author(s)
      Hajime Nagoya
    • Organizer
      Randomness, Integrability and Representation Theory in Quantum Field Theory 2021
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On connection problem of q-conformal blocks and its application2019

    • Author(s)
      名古屋創
    • Organizer
      . n connection problem of q-conformal blocks and its application, The 15th International Symposium on Orthogonal Polynomials, Special Functions and Application
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Determinant formulas for tau functions of q-Painleve systems in terms of q-Nekrasov partition functions2019

    • Author(s)
      名古屋創
    • Organizer
      China-Japan Joint Workshop on Integrable Systems 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Determinant formulas for tau functions of q-Painleve systems in terms of q-Nekrasov partition functions2019

    • Author(s)
      名古屋創
    • Organizer
      Topological Field Theories, String theory and Matrix Models - 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] On q-isomonodromic deformations and q-Nekrasov functions2019

    • Author(s)
      名古屋創
    • Organizer
      微分方程式の総合的研究
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 共形場理論とパンルヴェ方程式2019

    • Author(s)
      名古屋 創
    • Organizer
      日本数学会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi