• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

New developments in the research of discrete Sobolev inequalities - Applications to mathematical engineering

Research Project

Project/Area Number 18K03347
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionTsuda University

Principal Investigator

Nagai Atsushi  津田塾大学, 学芸学部, 教授 (90304039)

Co-Investigator(Kenkyū-buntansha) 亀高 惟倫  大阪大学, その他部局等, 名誉教授 (00047218)
Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords離散ソボレフ不等式 / 最良定数 / 離散ラプラシアン / グリーン行列 / フラーレン / 筋交問題 / ソボレフ不等式 / グリーン関数 / 離散化 / 離散ラプラシアン行列 / C60 / 筋交い問題 / 一般化逆行列 / C60フラーレン / グラフ理論 / 離散 / 差分方程式 / カオス
Outline of Final Research Achievements

We derived discrete Sobolev inequalities corresponding to certain boundary value problems of difference equations and found the best constant and the best vector, which attains the equality. The key matrix is the inverse matrix orthe Moore-Penrose generalized inverse of discrete Laplacian. We call this inverse matrix the Green matrix hereafter.
As applications, we found best constants of discrete Sobolev inequalities corresponding to 1812 isomers of C60 fullerene, including truncated regular icosahedron, or Buckyball. We proved rigorously that the best constant corresponding to Buckyball is the smallest, in other words the Buckyball is the most rigid among 1812 C60 isomers. Next, we found the best constant of discrete Sobolev inequality corresponding to braced grids and investigated how the rigidity of a grid depends on the arrangement and orientations of braces.

Academic Significance and Societal Importance of the Research Achievements

1812通りのC60フラーレン上の離散ソボレフ不等式の最良定数については、化学における問題の数学的基盤を与えた。筋交問題については筋交モデルの変形可能性については、1995年にグラフ理論の立場からの応用が知られていたが、今回は離散ソボレフ不等式という観点から筋交モデルの硬さについての知見が新たに得られたことで建築工学への応用が期待される。次に糸や棒のたわみ問題はオイラーも研究したと言われる古典的な問題であるが、そのグリーン関数を厳密に求め、正値性や再生核構造など丁寧に調べた。離散、連続ともにグリーン関数およびソボレフ不等式研究は数理的側面はもちろん、工学上の諸問題への応用も期待される。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (7 results)

All 2023 2022 2021 2020 2019

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 4 results) Presentation (2 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results) Book (1 results)

  • [Journal Article] Positivity and Hierarchical Structure of four Green Functions Corresponding to a Bending Problem of a Beam on a half line2023

    • Author(s)
      Yoshinori Kametaka, Kohtaro Watanabe, Atsushi Nagai, Kazuo Takemura and Hiroyuki Yamagishi
    • Journal Title

      Mathematical Journal of Okayama University

      Volume: 65 Issue: 1 Pages: 145-173

    • DOI

      10.18926/mjou/64006

    • URL

      https://ousar.lib.okayama-u.ac.jp/64006

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] The best constant of discrete Sobolev inequalities corresponding to braced grids : deformability and rigidity2023

    • Author(s)
      Atsushi Nagai, Akari Kano, Maho Kikuchi and Rikako Uehara
    • Journal Title

      RIMS Kokyuroku Bessatsu

      Volume: B91 Pages: 37-44

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] The best constant of discrete sobolev inequality corresponding to a discrete bending problem of a string2022

    • Author(s)
      Hiroyuki Yamagishi and Atsushi Nagai
    • Journal Title

      Saitama Mathematical Journal

      Volume: 34

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] The best constant of discrete Sobolev inequality on 1812 C60 fullerene isomers2020

    • Author(s)
      Kametaka Yoshinori、Watanabe Kohtaro、Nagai Atsushi、Takemura Kazuo、Yamagishi Hiroyuki、Sekido Hiroto
    • Journal Title

      JSIAM Letters

      Volume: 12 Issue: 0 Pages: 49-52

    • DOI

      10.14495/jsiaml.12.49

    • NAID

      130007881802

    • ISSN
      1883-0609, 1883-0617
    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 離散ソボレフ不等式とその応用2021

    • Author(s)
      永井敦
    • Organizer
      京都大学数理解析研究所共同研究「可積分系数理の諸相」
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] A difference equation connecting integrable and chaotic mappings2019

    • Author(s)
      Atsushi Nagai, Hiroko Yamaki, Kana Yanuma
    • Organizer
      Integrable systems, special functions and combinatorics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Book] グリーン関数2022

    • Author(s)
      亀高 惟倫、永井 敦、山岸 弘幸
    • Total Pages
      200
    • Publisher
      裳華房
    • ISBN
      9784785315979
    • Related Report
      2022 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi