• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Mathematical analysis of diffusion and diffusion wave property for the solutions to the system of the viscous fluid flow

Research Project

Project/Area Number 18K03368
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionOsaka University

Principal Investigator

Kobayashi Takayuki  大阪大学, 大学院基礎工学研究科, 教授 (50272133)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
KeywordsNavier-Stokes 方程式 / 2相流相転移モデル / 双曲型 Navier-Stokes 方程式 / 圧縮性 Navier-Stokes 方程式 / 消散項付波動方程式 / Navier Stokes 方程式 / 圧縮性 Navier Stokes 方程式 / 2相流相転移モデル / 双曲型 Navier Stokes 方程式 / 相転移境界を持つ2相流 / 非圧縮性双曲型流体方程式
Outline of Final Research Achievements

The purpose of this study is to investigate the existence of global solutions and its asymptotic behavior for the compressible Naver-Stokes equations, compressible Navier-Stokes-Korteweg equations, and hyperbolic Navier-Stokes equations. The objective is to mathematically clarify the wave and diffusion phenomena that appear in the flow.
In the initial value problem of the compressible Navier-Stokes-Korteweg equations, we clarified the diffusion wave phenomenon. In this system, we considered the case of zero speed of sound and showed the stability of the constant equilibrium state in the framework of Sobolev spaces, critical Besov spaces and maximal regularity. In the initial value problem of the Navier-Stokes equations, we proved the space-time L2 boundedness of the solutions. We also showed the local energy decay estimates of the solutions to the hyperbolic Navier-Stokes equations in the exterior domain and the perturbed half-space.

Academic Significance and Societal Importance of the Research Achievements

圧縮性 Navier-Stokes-Korteweg 方程式は、 蒸気と液体の2相流で、相転移境界が薄い遷移ゾーンとして見なされるモデル方程式として提唱されている。
この方程式の圧力項は非単調増加関数であるため、 定数平衡状態の安定性を議論する場合、音速がゼロの場合の考察が必要である。本研究で、その初期値問題が初めて考察され、安定性が示されたことは学術的意義がある。 双曲型 Navier-Stokes 方程式は、 斉次非圧縮性 Maxwell 流体のモデル方程式として提唱されている。本研究で、初期値境界値問題が初めて考察され、局所エネルギー減衰評価が得られたことは学術的意義がある。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (21 results)

All 2022 2021 2020 2019 2018

All Journal Article (9 results) (of which Peer Reviewed: 9 results,  Open Access: 3 results) Presentation (12 results) (of which Int'l Joint Research: 1 results,  Invited: 11 results)

  • [Journal Article] Time decay estimate with diffusion wave property and smoothing effect for solutions to the compressible Navier-Stokes-Korteweg system2021

    • Author(s)
      T. Kobayashi and K. Tsuda
    • Journal Title

      Funkcialaj Ekvacioj

      Volume: 64 Pages: 163-187

    • NAID

      130008083380

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] The global well-posedness of the compressible fluid model of Korteweg type for the critical case2021

    • Author(s)
      T. Kobayashi and M. MURATA
    • Journal Title

      Differential and Integral Equation,

      Volume: 34, No. 5-6 Pages: 245-264

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Asymptotic profile for diffusion wave terms of the compressible Navier-Stokes-Korteweg system2021

    • Author(s)
      T. Kobayashi, M. Misawa and K. Tsuda
    • Journal Title

      Mathemmatics

      Volume: 9(6) 683 Issue: 6 Pages: 1-20

    • DOI

      10.3390/math9060683

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Global existence and time decay estimate of solutions to the compressible Navier?Stokes?Korteweg system under critical condition2020

    • Author(s)
      Kobayashi Takayuki、Tsuda Kazuyuki
    • Journal Title

      Asymptotic Analysis

      Volume: To appear Issue: 2 Pages: 1-23

    • DOI

      10.3233/asy-201600

    • Related Report
      2020 Research-status Report 2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Global well-posedness and time-decay estimates of the compressible Navier-Stokes-Korteweg system in critical Besov spaces2019

    • Author(s)
      Noboru Chikami and Takayuki Kobayashi
    • Journal Title

      Journal of Mathematical Fluid Mechanics

      Volume: 印刷中 Issue: 2 Pages: 1-32

    • DOI

      10.1007/s00021-019-0431-8

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Time-space L2-boundedness for the 2D Navier-Stokes equations and hyperbolic Navier-Stokes equations2019

    • Author(s)
      T. Kobayashi , M. Misawa and K. Nakamura
    • Journal Title

      Tsukuba J. Mathematics

      Volume: 43, No 2. Pages: 223-239

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Time decay estimate with diffusion wave property and smoothing effect for solutions to the compressible Navier-Stokes-Korteweg system2019

    • Author(s)
      T. Kobayashi and K. Tsuda
    • Journal Title

      Funkcialaj Ekvacioj

      Volume: to appear

    • NAID

      130008083380

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Global well-posedness and time-decay estimates of the compressible Navier-Stokes-Korteweg system in critical Besov space2019

    • Author(s)
      N. Chikami and T. Kobayashi
    • Journal Title

      Journal of Mathematical Fluid Mechanics

      Volume: to appear

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] On a local energy decay estimate of solutions to the hyperbolic type Stokes equations2018

    • Author(s)
      T. Kobayashi, T. Kubo and K. Nakamura
    • Journal Title

      Journal of Differential Equations,

      Volume: 263, 10 Pages: 6061-6081

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] On the compressible Navier-Stokes-Korteweg system under the critical condition2022

    • Author(s)
      T. Kobayashi
    • Organizer
      研究集会「Dispersive and wave equations」
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 圧縮性 Navier-Stokes-Korteweg 方程式の大域的適切性について2022

    • Author(s)
      T. Kobayashi
    • Organizer
      研究集会「非線型偏微分方程式と走化性」
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Global well-posedness of the compressible Navier-Stokes-Korteweg system under critical condition2022

    • Author(s)
      T. Kobayashi
    • Organizer
      International Workshop on Multi-Phase Flows: Analysis, Modelling and Numerics
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 圧縮性 Navier-Stokes-Korteweg 方程式の時間大域解の存在と解の漸近挙動について2022

    • Author(s)
      T. Kobayashi
    • Organizer
      第10回弘前非線形方程式研究会
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] The global well-posedness of the compressible fluid model of Korteweg type for the critical case2021

    • Author(s)
      M. Murata
    • Organizer
      日本数学会年会 函数方程式論分科会
    • Related Report
      2020 Research-status Report
  • [Presentation] Global existence and time decay estimate of solutions to the compressible Navier- Stokes-Korteweg system under critical condition2019

    • Author(s)
      T. Kobayashi
    • Organizer
      Maximal regularity and nonlinear PDE, RIMS, Kyoto University
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Global existence of solutions to the compressible Navier-Stokes-Korteweg system2019

    • Author(s)
      T. Kobayashi
    • Organizer
      第36回九州における偏微分方程式研究集会, 九州大学西新プラザ
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Global existence and time decay estimate of solutions to the compressible Navier-Stokes-Korteweg system under critical condition2019

    • Author(s)
      T. Kobayashi
    • Organizer
      Maximal regularity and nonlinear PDE, RIMS, Kyoto University
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] On a local energy decay estimates of solutions to the Hyperbolic type Stokes equations2018

    • Author(s)
      T. Kobayashi
    • Organizer
      Conference on Mathematical Fluid Dynamics, Bad Boll, Germany
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] On a local energy decay estimates of solutions to the linear hyperbolic Navier Stokes equations2018

    • Author(s)
      T. Kobayashi
    • Organizer
      The Third Wayamba International Conference, Wayamba University, Sri Lanka
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Decay property for the Compressible Navier-Stokes-Korteweg system2018

    • Author(s)
      T. Kobayashi
    • Organizer
      Workshop on Mathematical Sciences, Wayamba University, Sri Lanka
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Stability problem for a constant equilibrium to the Compressible Navier-Stokes-Korteweg system2018

    • Author(s)
      T. Kobayashi
    • Organizer
      Mathematical Fluid Mechanics and Related Topic, Tokyo Inst. Tech.
    • Related Report
      2018 Research-status Report
    • Invited

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi