• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Classifications of non-self-similar singularities in nonlinear parabolic equations

Research Project

Project/Area Number 18K03373
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionTokyo Metropolitan University (2023)
Naruto University of Education (2021-2022)
Osaka City University (2019-2020)
The University of Tokyo (2018)

Principal Investigator

Seki Yukihiro  東京都立大学, 理学研究科, 准教授 (50728970)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords特異性解析 / 臨界指数 / 爆発 / Type II / 調和写像流方程式 / 特異点 / 特異性 / 藤田方程式 / 走化性方程式系 / 特異性形成 / 非自己相似的 / 爆発解
Outline of Final Research Achievements

In this project,we have studied non-self-similar singularity formation for various nonlinear parabolic problems including semilinear heat equation with power nonlinearity and harmonic map heat flow. In particular,for the critical exponent at which several qualitative properties of solutions drastically change, We have solved one of the major open problems concerning blowup phenomena.Besides,we studied singularity formation arising in the heat flow for harmonic maps, maps minimizing the Dirichlet energy, and obtained, using the methods developed in the above problem, a qualitative descriptions in terms of the theory of partial differential equations.

Academic Significance and Societal Importance of the Research Achievements

べき乗型非線形項の強さを示す重要な数にJoseph--Lundgren の臨界指数があり、それを境として解の構造が著しく変化する。臨界指数に丁度等しいべきでは様々な情報が退化するため、多くの重要な問題が未解決であった。その一つである本質的に自己相似的でない爆発解が存在問題に対して、初めて肯定的な解決を与えた。また、別の臨界指数についてこの手法を応用し、既存の爆発構造の退化版の存在を証明した。さらにその技術を駆使して微分幾何学に現れる調和写像流方程式に対する爆発解の解析に取り組み、特異性解析の詳しい描写に成功した。これらの成果により、非線形現象の解明に着実な進歩を与えた。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (39 results)

All 2024 2023 2022 2021 2020 2019 2018 Other

All Int'l Joint Research (2 results) Journal Article (7 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 7 results,  Open Access: 2 results) Presentation (27 results) (of which Int'l Joint Research: 4 results,  Invited: 25 results) Remarks (2 results) Funded Workshop (1 results)

  • [Int'l Joint Research] University of Bonn(ドイツ)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] University of Bonn(ドイツ)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Boundedness of solutions to a parabolic attraction-repulsion chemotaxis system in R^2: the attractive dominant case2021

    • Author(s)
      Nagai Toshitaka、Seki Yukihiro、Yamada Tetsuya
    • Journal Title

      Applied Mathematics Letters

      Volume: 20 Issue: 24 Pages: 1-6

    • DOI

      10.1016/j.aml.2021.107354

    • URL

      https://ocu-omu.repo.nii.ac.jp/records/2016912

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Global existence of solutions to a parabolic attraction-repulsion chemotaxis system in R^2 : the attractive dominant case2021

    • Author(s)
      Nagai Toshitaka、Seki Yukihiro、Yamada Tetsuya
    • Journal Title

      Nonlinear Analysis: Real World Applications

      Volume: 20 Issue: 23 Pages: 1-22

    • DOI

      10.1016/j.nonrwa.2021.103357

    • URL

      https://ocu-omu.repo.nii.ac.jp/records/2016911

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Refined construction of type II blow-up solutions for semilinear heat equations with Joseph-Lundgren supercritical nonlinearity2021

    • Author(s)
      Asato Mukai, Yukihiro Seki
    • Journal Title

      Discrete and Continuous Dynamical Systems, series A

      Volume: 20 Issue: 08 Pages: 1-39

    • DOI

      10.3934/dcds.2021060

    • URL

      https://ocu-omu.repo.nii.ac.jp/records/2016895

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Type II blow-up mechanisms in a semilinear heat equation with Lepin exponent2020

    • Author(s)
      Seki Yukihiro
    • Journal Title

      Journal of Differential Equations

      Volume: 268 Issue: 3 Pages: 853-900

    • DOI

      10.1016/j.jde.2019.08.026

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Transition of blow-up mechanisms in k-equivariant harmonic map heat flow2020

    • Author(s)
      Biernat Pawel、Seki Yukihiro
    • Journal Title

      Nonlinearity

      Volume: 19 Issue: 08 Pages: 1-40

    • DOI

      10.1088/1361-6544/ab74f4

    • URL

      https://ocu-omu.repo.nii.ac.jp/records/2016878

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Type II blow-up mechanism in supercritical harmonic map heat flow2019

    • Author(s)
      Pawel Biernat, Yukihiro Seki
    • Journal Title

      International Mathematics Research Notices

      Volume: 2 Issue: 2 Pages: 407-456

    • DOI

      10.1093/imrn/rnx122

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Type II blow-up mechanisms in a semilinear heat equation with critical Joseph-Lundgren exponent2018

    • Author(s)
      Yukihiro Seki
    • Journal Title

      Journal of Functional Analysis

      Volume: 275 Issue: 12 Pages: 3380-3456

    • DOI

      10.1016/j.jfa.2018.05.008

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] 2 次元放物型attraction-repulsion Keller{Segel 系に対する初期値問題について2024

    • Author(s)
      関行宏
    • Organizer
      第 39 回松山キャンプ
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 高次元球面に値をとる調和写像流の有限時間爆発に対する漸近解析について2023

    • Author(s)
      関行宏
    • Organizer
      松本偏微分方程式研究集会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 球面に値をとる調和写像流に対する球対称 爆発解の分類に関する考察2022

    • Author(s)
      関行宏
    • Organizer
      彦根偏微分方程式研究集会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 球面に値をとる調和写像流に対する球対称 爆発解の分類に関する考察2022

    • Author(s)
      関行宏
    • Organizer
      Okayama Workshop on Partial Differential Equations
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 球面に値をとる調和写像流に対する球対称 爆発解の分類に関する考察2022

    • Author(s)
      関行宏
    • Organizer
      楕円型・放物型微分方程式研究集会 龍谷大学
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 藤田方程式に対する有限時間爆発とその分類について2022

    • Author(s)
      関 行宏
    • Organizer
      「有限時間特異性」勉強会(第5回)
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Description of non-self-similar singularities in harmonic map heat flow2021

    • Author(s)
      関 行宏
    • Organizer
      京都大学NLPDEセミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 調和写像流方程式に対する特異性解析2021

    • Author(s)
      関 行宏
    • Organizer
      RIMS 共同研究(グルー プ型A) 「非線形問題への常微分方程式の手法によるアプローチ」
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Description of non-self-similar singularities in harmonic map heat ow2021

    • Author(s)
      Yukihiro Seki
    • Organizer
      OCAMI, International Workshop on Geometric Evolution Equations and Related Fields
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] 非線形放物型方程式に内在する非自己相似的特異性の描写2021

    • Author(s)
      関 行宏
    • Organizer
      数学研究会特別 賞受賞講演会,
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Transitions of blow-up mechanisms in $k$-equivariant harmonic map heat flow2019

    • Author(s)
      Yukihiro Seki
    • Organizer
      4th Swiss-Japanese PDE Seminar
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 藤田方程式における臨界指数と解の爆発構造2019

    • Author(s)
      関 行宏
    • Organizer
      南大阪応用数学セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 球面に値を取る調和写像流方程式の解の爆発について2019

    • Author(s)
      関 行宏
    • Organizer
      解析学研究特別セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 球面に値を取る調和写像流方程式における爆発構造の遷移2019

    • Author(s)
      関 行宏
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2019 Research-status Report
  • [Presentation] On type II blow-up mechanisms in a semilinear heat equation with supercritical nonlinearity2019

    • Author(s)
      関 行宏
    • Organizer
      名古屋微分方程式セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Transitions of blow-up mechanisms in $k$-equivariant harmonic map heat flow,2019

    • Author(s)
      関 行宏
    • Organizer
      応用解析セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 球面に値を取る調和写像流方程式における爆発構造について2019

    • Author(s)
      関 行宏
    • Organizer
      第45発展方程式研究会
    • Related Report
      2019 Research-status Report
  • [Presentation] Construction of refined type II blow-up solutions of the Fujita equation and its applications2018

    • Author(s)
      Yukihiro Seki
    • Organizer
      8th Euro-Japanese Workshop on Blow-up
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On blow-up mechanisms in harmonic map heat flow2018

    • Author(s)
      Yukihiro Seki
    • Organizer
      Ito-Workshop on Partial Differential Equations
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On type II blow-up mechanisms in a semilinear heat equation with super-critical nonlinearity2018

    • Author(s)
      Yukihiro Seki
    • Organizer
      PDE seminar at Wuhan institute of Physics and Mathematics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Type II blow-up mechanisms in a semilinear heat equation with critical Joseph-Lundgren exponent and harmonic map heat flow2018

    • Author(s)
      関 行宏
    • Organizer
      神戸大学解析セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 球面に値を取る調和写像流方程式の解の爆発について2018

    • Author(s)
      関 行宏
    • Organizer
      なかもず解析セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 球面に値を取る調和写像流方程式の解の爆発について2018

    • Author(s)
      関 行宏
    • Organizer
      京都大学NLPDE セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] On type II blow-up mechanisms in a semilinear heat equation with supercritical nonlinearity2018

    • Author(s)
      関 行宏
    • Organizer
      信州大学偏微分方程式研究集会,
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] On type II blow-up mechanisms in a semilinear heat equation with supercritical nonlinearity2018

    • Author(s)
      関 行宏
    • Organizer
      応用解析研究会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] On blow-up mechanisms in harmonic map heat flow2018

    • Author(s)
      関 行宏
    • Organizer
      RIMS 研究集会「反応拡散方程式-伝播現象と特異性の解析および諸科学への応用-」
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] On type II blow-up mechanisms in a semilinear heat equation with supercritical nonlinearity2018

    • Author(s)
      関 行宏
    • Organizer
      微分方程式の総合的研究
    • Related Report
      2018 Research-status Report
    • Invited
  • [Remarks]

    • URL

      http://www.sci.osaka-cu.ac.jp/OCAMI/index.html

    • Related Report
      2019 Research-status Report
  • [Remarks] 大阪市立大学数学研究所

    • URL

      http://www.sci.osaka-cu.ac.jp/OCAMI/index.html

    • Related Report
      2018 Research-status Report
  • [Funded Workshop] Ito Workshop on Partial Differential Equations2018

    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi