• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Higher analogies of reflection principles and cardinal arithmetic

Research Project

Project/Area Number 18K03397
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12030:Basic mathematics-related
Research InstitutionKobe University

Principal Investigator

Sakai Hiroshi  神戸大学, システム情報学研究科, 准教授 (70468239)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords反映原理 / 基数算術 / 巨大基数 / 強制法公理 / 公理的集合論
Outline of Final Research Achievements

Set theorists have been interested in reflection principles at aleph_2 since they have many interesting consequences on cardinal arithmetic and infinite combinatorics. So far, many reflection principles at aleph_2 have been formulated, and the relationships among them and their consequences are studied extensively. These reflection principles can be naturally generalized to those at larger cardinals, which we call higher analogues. In this research, I studied these higher analogues of reflection principles at aleph_2 such as the stationary reflection principle and the Rado conjecture. Especially, I focused on the relationships among them and their consequences on cardinal arithmetic. As a result, it turned out that the relationships among higher analogues are similar to those among reflection principles at aleph_2. Also, I could prove that many of higher analogues do not have similar consequences on cardinal arithmetic to those of reflection principles at aleph_2.

Academic Significance and Societal Importance of the Research Achievements

定常性反映原理やフォドア型反映原理などのアレフ2レベルの反映原理は,マルティンの極大強制法公理という強い強制法公理から帰結され,この関係からも興味が持たれている.近年,強制法の手法の開発により,強制法公理の高レベルへの一般化が考察されている.これらの高レベルの強制法公理を考察する上で,本研究の研究成果は重要な知見となる.また,反映原理や強制法公理に限らず,アレフ1やアレフ2のレベルの集合や数学的構造については理解が進んでいるが,より高レベルの集合や数学的構造についての理解は集合論の大きな課題になっている.本研究の成果は,この集合論の課題の克服に貢献するものである.

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (14 results)

All 2022 2021 2020 2019 2018 Other

All Journal Article (5 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 5 results) Presentation (5 results) (of which Int'l Joint Research: 5 results) Remarks (2 results) Funded Workshop (2 results)

  • [Journal Article] Strong downward Loewenheim-Skolem theorems for stationary logics, II: reflection down to the continuum2021

    • Author(s)
      Fuchino Sakae、Ottenbreit Maschio Rodrigues Andre、Sakai Hiroshi
    • Journal Title

      Archive for Mathematical Logic

      Volume: 60 Issue: 3-4 Pages: 495-523

    • DOI

      10.1007/s00153-020-00751-6

    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Strong downward Lowenheim Skolem theorems for stationary logics, I2020

    • Author(s)
      Fuchino Sakae、Rodrigues Andre Ottenbreit Maschio、Sakai Hiroshi
    • Journal Title

      Archive for Mathematical Logic

      Volume: 60 Issue: 1-2 Pages: 17-47

    • DOI

      10.1007/s00153-020-00730-x

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On the existence of skinny stationary subsets2019

    • Author(s)
      Matsubara Yo、Sakai Hiroshi、Usuba Toshimichi
    • Journal Title

      Annals of Pure and Applied Logic

      Volume: 170 Issue: 5 Pages: 539-557

    • DOI

      10.1016/j.apal.2018.12.003

    • NAID

      120006604682

    • Related Report
      2019 Research-status Report 2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] A variant of Shelah's characterization of Strong Chang's Conjecture2019

    • Author(s)
      Cox Sean、Sakai Hiroshi
    • Journal Title

      Mathematical Logic Quarterly

      Volume: 65 Issue: 2 Pages: 251-257

    • DOI

      10.1002/malq.201800082

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The weakly compact reflection principle need not imply a high order of weak compactness2019

    • Author(s)
      Cody Brent、Sakai Hiroshi
    • Journal Title

      Archive for Mathematical Logic

      Volume: 59 Issue: 1-2 Pages: 179-196

    • DOI

      10.1007/s00153-019-00686-7

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] An extension of the Subcomplete Forcing Axiom which implies diamond+2022

    • Author(s)
      Hiroshi Sakai
    • Organizer
      MFO Workshop "Set Theory"
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] An extension of the Subcomplete Forcing Axiom which implies diamond+2021

    • Author(s)
      Hiroshi Sakai
    • Organizer
      京都大学数理解析研究所研究集会「実数の集合論における近年の進展」
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Higher stationary reflection and cardinal arithmetic2020

    • Author(s)
      酒井 拓史
    • Organizer
      RIMS Set Theory Workshop 2020: Reals and Topology
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] On generalized notion of higher stationarity in P_kappa ( lambda )2018

    • Author(s)
      Hiroshi Sakai
    • Organizer
      RIMS Workshop "Axiomatic Set Theory and its Applications"
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] On generalized notion of higher stationarity in P_kappa ( lambda )2018

    • Author(s)
      Hiroshi Sakai
    • Organizer
      Reflections on Set Theoretic Reflection
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Remarks] H. Sakai's Web Page

    • URL

      http://www2.kobe-u.ac.jp/~hsakai/

    • Related Report
      2022 Annual Research Report
  • [Remarks] Hiroshi Sakai's Web Page

    • URL

      http://www2.kobe-u.ac.jp/~hsakai/

    • Related Report
      2021 Research-status Report 2019 Research-status Report
  • [Funded Workshop] RIMS 共同研究 "New Developments in Forcing and Cardinal Arithmetic"2022

    • Related Report
      2022 Annual Research Report
  • [Funded Workshop] RIMS Set Theory Workshop 20192019

    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi