• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

New developments for high-dimensional higher-order asymptotics and its applications

Research Project

Project/Area Number 18K03409
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

YATA KAZUYOSHI  筑波大学, 数理物質系, 准教授 (90585803)

Co-Investigator(Kenkyū-buntansha) 青嶋 誠  筑波大学, 数理物質系, 教授 (90246679)
Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords高次元統計解析 / 高次元PCA / 高次バイアス補正 / 高次元判別分析 / 高次元統計的検定 / 高次元クラスタリング / 高次元カーネルPCA / 高次元2次判別方式 / 高次元スパース推測 / 高次元バイアス項 / 高次元カーネルSVM / データ変換法 / 高次元統計的推測 / 高次元共分散行列 / 高次元スパースPCA / 高次漸近理論
Outline of Final Research Achievements

We developed higher-order asymptotic theories for higher-dimensional statistical analysis. Based on higher-order bias-corrected estimators and higher-order statistics for high-dimensional data, we provided highly flexible and accurate statistical methodologies such as inferences for high-dimensional mean vectors and covariance matrices, high-dimensional discriminant analysis, high-dimensional clustering.

Academic Significance and Societal Importance of the Research Achievements

本研究は,理論的困難さゆえに未開拓であった,高次元統計解析の高次漸近論を新たに開拓した.次元数dと標本数nが織りなす高次漸近論を構築することで,高次元データに対する精密な理論と,それに基づく高精度かつ柔軟な方法論を提供することが可能となり,学問的に新規で独創的な研究になっている.高次漸近論から導かれる方法論は,dが小さな多変量データにも推測の精度を保証できるので,非常に汎用性が高く,多様な高次元データの解析を必要とする社会へもインパクトが期待できる.なお,本研究の着眼点やアプローチは,研究代表者と分担者の共同研究で得られた知見が基になっており,極めてオリジナリティーが高い.

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (109 results)

All 2022 2021 2020 2019 2018 Other

All Int'l Joint Research (8 results) Journal Article (21 results) (of which Peer Reviewed: 13 results,  Open Access: 16 results) Presentation (76 results) (of which Int'l Joint Research: 19 results,  Invited: 22 results) Book (1 results) Remarks (3 results)

  • [Int'l Joint Research] Seoul National University(韓国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] University of Stavanger(ノルウェー)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] Seoul National University(韓国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] University of Stavanger(ノルウェー)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Seoul National University(韓国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] University of stavanger(ノルウェー)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] University of Hong Kong(香港)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] University of Stavanger(ノルウェー)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Geometric classifiers for high-dimensional noisy data2022

    • Author(s)
      Ishii Aki、Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 188 Pages: 104850-104850

    • DOI

      10.1016/j.jmva.2021.104850

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Clustering by principal component analysis with Gaussian kernel in high-dimension, low-sample-size settings2021

    • Author(s)
      Nakayama Yugo、Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 185 Pages: 104779-104779

    • DOI

      10.1016/j.jmva.2021.104779

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Asymptotic properties of distance-weighted discrimination and its bias correction for high-dimension, low-sample-size data2021

    • Author(s)
      Egashira Kento、Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 4 Issue: 2 Pages: 821-840

    • DOI

      10.1007/s42081-021-00135-x

    • NAID

      210000176902

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 論説:高次元小標本における統計的仮説検定2021

    • Author(s)
      青嶋 誠、石井 晶、矢田和善
    • Journal Title

      数学

      Volume: 73 Pages: 360-379

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] High-dimensional Two-sample Test Procedures under the Strongly Spiked Eigenvalue Model2020

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Journal Title

      Ouyou toukeigaku

      Volume: 49 Issue: 3 Pages: 109-125

    • DOI

      10.5023/jappstat.49.109

    • NAID

      130008022515

    • ISSN
      0285-0370, 1883-8081
    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] 高次元におけるDistance Weighted Discriminationについて2020

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2157 Pages: 1-10

    • Related Report
      2020 Research-status Report
    • Open Access
  • [Journal Article] High-dimensional covariance matrix estimation under the SSE model2020

    • Author(s)
      小西啓介、矢田和善、青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2157 Pages: 11-20

    • NAID

      120006956688

    • Related Report
      2020 Research-status Report
    • Open Access
  • [Journal Article] Tests for high-dimensional covariance structures under the non-strongly spiked eigenvalue model2020

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2157 Pages: 21-30

    • NAID

      120006956689

    • Related Report
      2020 Research-status Report
    • Open Access
  • [Journal Article] Geometric consistency of principal component scores for high‐dimensional mixture models and its application2019

    • Author(s)
      Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Scandinavian Journal of Statistics

      Volume: - Issue: 3 Pages: 899-921

    • DOI

      10.1111/sjos.12432

    • NAID

      120007163354

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Bias-corrected support vector machine with Gaussian kernel in high-dimension, low-sample-size settings2019

    • Author(s)
      Nakayama Yugo、Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Annals of the Institute of Statistical Mathematics

      Volume: - Issue: 5 Pages: 1-30

    • DOI

      10.1007/s10463-019-00727-1

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Inference on high-dimensional mean vectors under the strongly spiked eigenvalue model2019

    • Author(s)
      A. ishii, K. Yata, M. Aoshima
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 印刷中 Issue: 1 Pages: 105-128

    • DOI

      10.1007/s42081-018-0029-z

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A quadratic classifier for high-dimension, low-sample-size data under the strongly spiked eigenvalue model2019

    • Author(s)
      Ishii Aki, Yata Kazuyoshi, Aoshima Makoto
    • Journal Title

      Springer Proceedings in Mathematics and Statistics

      Volume: 294 Pages: 131-142

    • DOI

      10.1007/978-3-030-28665-1_10

    • ISBN
      9783030286644, 9783030286651
    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] 強スパイク固有値モデルにおける高次元一標本検定とその応用について2019

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2124 Pages: 56-64

    • Related Report
      2019 Research-status Report
  • [Journal Article] Soft-margin SVMs in the HDLSS context2019

    • Author(s)
      中山優吾, 矢田和善, 青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2124 Pages: 44-55

    • Related Report
      2019 Research-status Report
  • [Journal Article] Equality tests of high-dimensional covariance matrices under the strongly spiked eigenvalue model2019

    • Author(s)
      Ishii Aki, Yata Kazuyoshi, Aoshima Makoto
    • Journal Title

      Journal of Statistical Planning and Inference

      Volume: 202 Pages: 99-111

    • DOI

      10.1016/j.jspi.2019.02.002

    • NAID

      120007133560

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] High-dimensional quadratic classifiers in non-sparse settings.2018

    • Author(s)
      Aoshima, M., Yata, K.
    • Journal Title

      Methodology and Computing in Applied Probability

      Volume: to appear Issue: 3 Pages: 663-682

    • DOI

      10.1007/s11009-018-9646-z

    • NAID

      120007132793

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Distance-based classifier by data transformation for high-dimension, strongly spiked eigenvalue models2018

    • Author(s)
      Aoshima, M., Yata, K.
    • Journal Title

      Annals of the Institute of Statistical Mathematics

      Volume: to appear Issue: 3 Pages: 473-503

    • DOI

      10.1007/s10463-018-0655-z

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A test of sphericity for high-dimensional data and its application for detection of divergently spiked noise2018

    • Author(s)
      Yata Kazuyoshi, Aoshima Makoto, Nakayama Yugo
    • Journal Title

      Sequential Analysis

      Volume: 37 Issue: 3 Pages: 397-411

    • DOI

      10.1080/07474946.2018.1548850

    • NAID

      120007133441

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] An equality test of high-dimensional covariance matrices under the SSE model2018

    • Author(s)
      矢田和善, 石井 晶, 青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2091 Pages: 22-30

    • Related Report
      2018 Research-status Report
  • [Journal Article] A general framework of SVM in HDLSS settings2018

    • Author(s)
      中山優吾, 矢田和善, 青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2091 Pages: 14-21

    • Related Report
      2018 Research-status Report
  • [Journal Article] A test for high-dimensional covariance matrices via the extended cross-data-matrix methodology2018

    • Author(s)
      遠藤紘平, 矢田和善, 青嶋 誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2091 Pages: 1-13

    • Related Report
      2018 Research-status Report
  • [Presentation] 階層的クラスタリングの高次元漸近的性質について2022

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「ベイズ法と統計的推測」
    • Related Report
      2021 Annual Research Report
  • [Presentation] 高次元主成分スコアに基づく異常値の検出法2022

    • Author(s)
      中山優吾, 矢田和善, 青嶋 誠
    • Organizer
      日本数学会年度会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 高次元における客観的総合指標の一致性2022

    • Author(s)
      坂東拓馬、清 智也、矢田和善
    • Organizer
      日本数学会年度会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 強スパイク固有値モデルにおける高次元2次判別2021

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      応用統計学会年会
    • Related Report
      2021 Annual Research Report
  • [Presentation] High-dimensional quadratic classifiers under the strongly spiked eigenvalue model2021

    • Author(s)
      Ishii Aki、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      IISA 2021 Conference
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] High-dimensional classifiers under the strongly spiked eigenvalue model2021

    • Author(s)
      Ishii Aki、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      The 4rd International Conference on Econometrics and Statistics
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Tests for covariance structures in high-dimensional data2021

    • Author(s)
      Yata Kazuyoshi、Ishii Aki、Aoshima Makoto
    • Organizer
      The 4rd International Conference on Econometrics and Statistics
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Clustering by kernel PCA with Gaussian kernel and tuning for high-dimensional data2021

    • Author(s)
      Nakayama Yugo、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      The 4rd International Conference on Econometrics and Statistics
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Sparse PCA for high-dimensional data based on the noise-reduction methodology and its application2021

    • Author(s)
      Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      The 63rd ISI World Statistics Congress
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 高次元統計学の方法による銀河の分光マップの解析2021

    • Author(s)
      竹内 努、矢田和善、青嶋 誠、石井 晶、江頭健斗、河野 海、中西康一郎、Suchetha Cooray、河野孝太郎
    • Organizer
      科研費シンポジウム「多様な分野における統計科学に関する理論と方法論の革新的展開」
    • Related Report
      2021 Annual Research Report
  • [Presentation] 高次元データにおけるノイズ構造の高精度な解析に基づく統計的推測2021

    • Author(s)
      矢田和善、石井 晶、青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 単一強スパイク固有値モデルにおける高次元平均ベクトルの2標本検定2021

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 高次元における重み付き判別分析とデータ変換法について2021

    • Author(s)
      中山優吾, 矢田和善, 青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] Asymptotic properties of high-dimensional kernel PCA and its applications2021

    • Author(s)
      Nakayama Yugo、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      International Symposium on New Developments of Theories and Methodologies for Large Complex Data
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 高次元相互共分散行列の特異値分解とその応用2021

    • Author(s)
      佐々木拓真、矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「統計科学の革新にむけて」
    • Related Report
      2020 Research-status Report
  • [Presentation] 高次元におけるDWDとWDWDのバイアス補正とその比較2021

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「統計科学の革新にむけて」
    • Related Report
      2020 Research-status Report
  • [Presentation] 高次元におけるカーネル主成分分析の漸近的性質と異常値の検出への応用2021

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      日本数学会2021年度年会
    • Related Report
      2020 Research-status Report
  • [Presentation] 距離加重判別分析の高次元漸近的性質2021

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      日本数学会2021年度年会
    • Related Report
      2020 Research-status Report
  • [Presentation] High-dimensional statistical analysis of the ALMA spectroscopic map of a nearby galaxy NGC 2532021

    • Author(s)
      Takeuchi Tsutomu、Kono Kai、Yata Kazuyoshi、Aoshima Makoto、Ishii Aki、Nakanishi Koichiro、Egashira Kento、Cooray Suchetha、Kohono Kotatro
    • Organizer
      Galaxy Evolution Workshop 2020
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Analysis of integral field spectroscopic data as a high-dimensional low-sample size data problem2021

    • Author(s)
      竹内 努、河野 海、中西康一郎、矢田 和善、青嶋 誠、石井 晶、江頭健斗
    • Organizer
      日本天文学会2021年春季年会
    • Related Report
      2020 Research-status Report
  • [Presentation] 高次元スパースPCAの一致性とその応用2020

    • Author(s)
      矢田和善、青嶋 誠
    • Organizer
      2020年度統計関連学会連合大会
    • Related Report
      2020 Research-status Report
  • [Presentation] 高次元小標本における異常値の検出2020

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      2020年度統計関連学会連合大会
    • Related Report
      2020 Research-status Report
  • [Presentation] Tests of high-dimensional correlation matrices under the strongly spiked eigenvalue model2020

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      2020年度統計関連学会連合大会
    • Related Report
      2020 Research-status Report
  • [Presentation] 高次元データにおける距離加重判別分析の漸近的性質とバイアス補正2020

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      2020年度統計関連学会連合大会
    • Related Report
      2020 Research-status Report
  • [Presentation] 客観的総合指数とその高次元漸近理論による一致性について2020

    • Author(s)
      坂東拓馬、清 智也、矢田和善
    • Organizer
      2020年度統計関連学会連合大会
    • Related Report
      2020 Research-status Report
  • [Presentation] 高次元固有ベクトルの検定について2020

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      日本数学会2020年度秋季総合分科会
    • Related Report
      2020 Research-status Report
  • [Presentation] Clustering by kernel principal component analysis for high-dimensional data2020

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      日本数学会2020年度秋季総合分科会
    • Related Report
      2020 Research-status Report
  • [Presentation] High-dimensional statistics for integral field spectroscopic data2020

    • Author(s)
      竹内 努、河野 海、中西康一郎、矢田和善、青嶋 誠、石井 晶、江頭健斗
    • Organizer
      初代星初代銀河研究会2020
    • Related Report
      2020 Research-status Report
  • [Presentation] 高次元カーネル主成分分析に基づく異常値の検出2020

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「大規模複雑データの理論と方法論:最前線の動向と新たな展開」
    • Related Report
      2020 Research-status Report
  • [Presentation] Sparse PCA by the noise-reduction methodology2020

    • Author(s)
      矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「大規模複雑データの理論と方法論:最前線の動向と新たな展開」
    • Related Report
      2020 Research-status Report
  • [Presentation] Analysis of spatially resolved galaxy spectra as a high-dimensional low-sample size data problem2020

    • Author(s)
      竹内 努、河野 海、中西康一郎、矢田和善、青嶋 誠、石井 晶、江頭健斗
    • Organizer
      科研費シンポジウム「大規模複雑データの理論と方法論:最前線の動向と新たな展開」
    • Related Report
      2020 Research-status Report
  • [Presentation] 高次元データにおける異常値の検出について2020

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「機械学習・統計学・最適化の数理とAI技術への展開」
    • Related Report
      2020 Research-status Report
  • [Presentation] 高次元相互共分散行列の特異値推定について2020

    • Author(s)
      矢田和善, 青嶋 誠
    • Organizer
      日本数学会年度会
    • Related Report
      2019 Research-status Report
  • [Presentation] 高次元固有ベクトルの検定について2020

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Organizer
      日本数学会年度会
    • Related Report
      2019 Research-status Report
  • [Presentation] 高次元データに対する共分散構造の検定2020

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「統計的モデルの新展開」
    • Related Report
      2019 Research-status Report
  • [Presentation] ノイズ掃き出し法に基づく共分散行列の推定2020

    • Author(s)
      小西啓介, 矢田和善, 青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「統計的モデルの新展開」
    • Related Report
      2019 Research-status Report
  • [Presentation] 高次元データにおけるDistance Weighted Discriminationについて2020

    • Author(s)
      江頭健斗, 矢田和善, 青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「統計的モデルの新展開」
    • Related Report
      2019 Research-status Report
  • [Presentation] データ変換を用いた高次元判別分析について2020

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Organizer
      科研費シンポジウム「多様な高次元モデルにおける理論と方法論,及び,関連分野への応用」
    • Related Report
      2019 Research-status Report
  • [Presentation] High-dimensional covariance matrix estimation under the strongly spiked eigenvalue model2020

    • Author(s)
      小西啓介, 矢田和善, 青嶋 誠
    • Organizer
      科研費シンポジウム「多様な高次元モデルにおける理論と方法論,及び,関連分野への応用」
    • Related Report
      2019 Research-status Report
  • [Presentation] Asymptotic properties of distance weighted discrimination and its bias correction in HDLSS settings2020

    • Author(s)
      江頭健斗, 矢田和善, 青嶋 誠
    • Organizer
      科研費シンポジウム「多様な高次元モデルにおける理論と方法論,及び,関連分野への応用」
    • Related Report
      2019 Research-status Report
  • [Presentation] Tests for high-dimensiomal covariance structures under the SSE model2019

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      International Symposium on Theories and Methodologies for Large Complex Data
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Inference on mean vectors for high-dimensional data with the strongly spiked eigenstructure2019

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 3rd International Conference on Econometrics and Statistics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A high-dimensional quadratic classifier by data transformation for strongly spiked eigenvalue models2019

    • Author(s)
      Kazuyoshi Yata, Aki Ishii, Makoto Aoshima
    • Organizer
      The 3rd International Conference on Econometrics and Statistics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A test of sphericity for high-dimensional data and its application for detection of divergently spiked noise2019

    • Author(s)
      Kazuyoshi Yata
    • Organizer
      The 7th International Workshop in Sequential Methodologies
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 単一強スパイク固有値モデルに対する高次元平均ベクトルの2標本検定2019

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Organizer
      科研費シンポジウム「統計的推測および確率解析に関する総合的研究」
    • Related Report
      2019 Research-status Report
  • [Presentation] 高次元の統計学:高次元PCAとその応用2019

    • Author(s)
      矢田和善
    • Organizer
      応用統計ワークショップ
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Asymptotic properties of kernel PCA with Gaussian kernel for high-dimensional data2019

    • Author(s)
      中山優吾, 矢田和善,青嶋 誠
    • Organizer
      科研費シンポジウム「統計学と機械学習の数理と展開」
    • Related Report
      2019 Research-status Report
  • [Presentation] 高次元混合データにおける幾何学的一致性について2019

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2019 Research-status Report
  • [Presentation] 単一強スパイク固有値モデルにおける高次元二標本検定2019

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2019 Research-status Report
  • [Presentation] Tests for high-dimensional covariance structures based on the eigenstructures2019

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      統計関連学会連合大会
    • Related Report
      2019 Research-status Report
  • [Presentation] 強スパイク固有値モデルにおける高次元共分散行列の推定2019

    • Author(s)
      小西啓介, 矢田和善, 青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Related Report
      2019 Research-status Report
  • [Presentation] カーネル主成分分析に基づく高次元データのクラスタリングとチューニング2019

    • Author(s)
      中山優吾, 矢田和善, 青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Related Report
      2019 Research-status Report
  • [Presentation] データ変換を用いた高次元2次判別方式について2019

    • Author(s)
      矢田和善, 石井 晶, 青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Related Report
      2019 Research-status Report
  • [Presentation] Geometrical quadratic discriminant analysis for high-dimension, strongly spiked eigenvalue models2019

    • Author(s)
      矢田和善, 石井 晶, 青嶋 誠
    • Organizer
      科研費シンポジウム「高次元複雑データの統計モデリング」
    • Related Report
      2019 Research-status Report
  • [Presentation] A high-dimensional quadratic classifier under the strongly spiked eigenvalue model2019

    • Author(s)
      Kazuyoshi Yata, Aki Ishii, Makoto Aoshima
    • Organizer
      The 14th Workshop on Stochastic Models, Statistics and their Application
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Tests of high-dimensional mean vectors and its application under the SSE model2019

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      Waseda International Symposium“Introduction of General Causality to Various Data & its Applications”
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 拡張クロスデータ行列法による高次元共分散構造の検定について2019

    • Author(s)
      矢田和善,青嶋 誠,石井 晶
    • Organizer
      日本数学会年度会
    • Related Report
      2018 Research-status Report
  • [Presentation] 強スパイクモデルにおける固有空間の推測と高次元平均ベクトルの検定2019

    • Author(s)
      石井 晶, 矢田和善,青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「最尤法とベイズ法」
    • Related Report
      2018 Research-status Report
  • [Presentation] カーネル主成分分析に基づく高次元データのクラスタリングについて2019

    • Author(s)
      中山優吾, 矢田和善,青嶋 誠
    • Organizer
      京都大学数理解析研究所研究集会「最尤法とベイズ法」
    • Related Report
      2018 Research-status Report
  • [Presentation] A high-dimensional quadratic classifier after feature selection2018

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      International Symposium on Statistical Theory and Methodology for Large Complex Data
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Tests of high-dimensional mean vectors under the SSE model2018

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      International Symposium on Statistical Theory and Methodology for Large Complex Data
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Equality tests for high-dimensional covariance matrices2018

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 27th South Taiwan Statistics Conference
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Regularized PCA for high-dimensional data based on the noise reduction methodology2018

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      Fifth Institute of Mathematical Statistics Asia Pacific Rim Meeting
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Inference on high-dimensional mean vectors under the strongly spiked eigenvalue model2018

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima, Aki Ishii
    • Organizer
      The 9th International Workshop on Applied Probability
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Consistency properties of regularized noise reduction methodology in high-dimensional settings2018

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 4th International Society of NonParametric Statistics Conference
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 計量生物学における高次元統計解析の可能性2018

    • Author(s)
      青嶋 誠, 矢田和善, 仲木 竜
    • Organizer
      統計関連学会連合大会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Equality tests of high-dimensional covariance matrices on the basis of strongly spiked eigenvalues2018

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      Waseda International Symposium“Introduction of General Causality to Various Data & its Innovation of the Optimal Inference”
    • Related Report
      2018 Research-status Report
  • [Presentation] Equality tests of high-dimensional covariance matrices with strongly spiked eigenstructures2018

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 2nd International Conference on Econometrics and Statistics
    • Related Report
      2018 Research-status Report
  • [Presentation] 高次元平均ベクトルの一致推定について2018

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2018 Research-status Report
  • [Presentation] Strongly spiked eigenvalueモデルにおける高次元相関ベクトルの検定について2018

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2018 Research-status Report
  • [Presentation] 変数選択を用いた高次元2次判別方式について2018

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] 高次元カーネル主成分分析の漸近的性質とその応用2018

    • Author(s)
      中山 優吾, 矢田和善, 青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] A quadratic classifier for high-dimensional data under the strongly spiked eigenvalue model2018

    • Author(s)
      石井 晶, 矢田和善,青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] 高次元共分散構造に関する検定の一般化について2018

    • Author(s)
      矢田和善,青嶋 誠,石井 晶
    • Organizer
      科研費シンポジウム「多変量データ解析法における理論と応用」
    • Related Report
      2018 Research-status Report
  • [Presentation] Tests for high-dimensional covariance matrices and correlation matrices under the strongly spiked eigenvalue model2018

    • Author(s)
      石井 晶, 矢田和善,青嶋 誠
    • Organizer
      科研費シンポジウム「融合する統計科学」
    • Related Report
      2018 Research-status Report
  • [Presentation] カーネル主成分分析に基づく高次元データのクラスタリング2018

    • Author(s)
      中山優吾, 矢田和善,青嶋 誠
    • Organizer
      科研費シンポジウム「予測モデリングとその周辺 -機械学習・統計科学・情報理論からのアプローチ-」
    • Related Report
      2018 Research-status Report
  • [Book] 高次元の統計学2019

    • Author(s)
      青嶋 誠,矢田和善
    • Total Pages
      120
    • Publisher
      共立出版
    • ISBN
      9784320112636
    • Related Report
      2019 Research-status Report
  • [Remarks] trios

    • URL

      https://trios.tsukuba.ac.jp/researcher/0000000526

    • Related Report
      2021 Annual Research Report 2020 Research-status Report
  • [Remarks] 青嶋研究室ホームページ

    • URL

      http://www.math.tsukuba.ac.jp/~aoshima-lab/jp/

    • Related Report
      2021 Annual Research Report 2020 Research-status Report 2019 Research-status Report 2018 Research-status Report
  • [Remarks] trios

    • URL

      http://www.trios.tsukuba.ac.jp/researcher/0000000526

    • Related Report
      2019 Research-status Report 2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi