• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A fast and simple consistent variable selection method for high-dimensional multivariate data

Research Project

Project/Area Number 18K03415
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionHiroshima University

Principal Investigator

Yanagihara Hirokazu  広島大学, 先進理工系科学研究科(理), 教授 (70342615)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords変数選択 / 多変量線形回帰モデル / 一致性 / 有効性 / 高次元漸近理論 / 情報量規準 / モデル選択規準 / 多変量線形回帰 / 多変量線型回帰モデル / 高次元データ
Outline of Final Research Achievements

We proposed a fast and simple consistent variable selection method in multivariate linear regression models when the numbers of response and explanatory variables are large. The decision whether an explanatory variable is necessary or not is based on the difference between the model selection criteria of the full model and a candidate model in which only the target explanatory variable is removed. The consistency of the model selection criterion used was evaluated using asymptotic theory, in which the sample size goes to infinity under the condition that the sum of the numbers of response and explanatory variables divided by the sample size converges to a constant less than 1. By guaranteeing the consistency with this asymptotic theory, we could propose a variable selection method that is expected to increase the probability of selecting the true explanatory variables regardless of the sizes of the numbers of response and explanatory variables if the sample size is large enough.

Academic Significance and Societal Importance of the Research Achievements

本研究課題で提案する変数選択法は,ある程度大きい標本数があれば,目的変数や説明変数の個数の大小にかかわらず,選択確率が高くなると期待できる.よって,提案手法は,既存の変数選択法と一線を画す,計算時間が短く目的変数や説明変数の個数の大小によらないuser friendlyな手法であると言える. また,他の多変量解析法の変数選択法に拡張できる可能性があることから,提案手法は汎用性も高い変数選択法になることも期待できる.以上のことから,提案する変数選択法は現在広く利用されているスパース推定に基づく変数選択法に替わる標準的な手法になる可能性を秘めていると言える.

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (44 results)

All 2022 2021 2020 2019 2018 Other

All Int'l Joint Research (2 results) Journal Article (16 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 16 results,  Open Access: 9 results) Presentation (26 results) (of which Int'l Joint Research: 10 results,  Invited: 10 results)

  • [Int'l Joint Research] Institute of Marine Research(ノルウェー)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] nstitute of Marine Research(ノルウェー)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Ridge Estimate Application to Growth Function2021

    • Author(s)
      Kamo Ken-ichi、Yanagihara Hirokazu
    • Journal Title

      FORMATH

      Volume: 20 Issue: 0 Pages: n/a

    • DOI

      10.15684/formath.20.002

    • NAID

      130008085782

    • ISSN
      2188-5729
    • Year and Date
      2021-09-07
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Coordinate optimization for generalized fused Lasso2021

    • Author(s)
      Ohishi M.、Fukui K.、Okamura K.、Itoh Y.、Yanagihara H.
    • Journal Title

      Communications in Statistics - Theory and Methods

      Volume: 50 Issue: 24 Pages: 5955-5973

    • DOI

      10.1080/03610926.2021.1931888

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] A consistent likelihood-based variable selection method in normal multivariate linear regression2021

    • Author(s)
      Oda Ryoya、Yanagihara Hirokazu
    • Journal Title

      Smart Innovation, Systems and Technologies

      Volume: 238 Pages: 391-401

    • DOI

      10.1007/978-981-16-2765-1_33

    • ISBN
      9789811627644, 9789811627651
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Coordinate descent algorithm for normal-likelihood-based group Lasso in multivariate linear regression2021

    • Author(s)
      Yanagihara Hirokazu、Oda Ryoya
    • Journal Title

      Smart Innovation, Systems and Technologies

      Volume: 238 Pages: 429-439

    • DOI

      10.1007/978-981-16-2765-1_36

    • ISBN
      9789811627644, 9789811627651
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Optimizations for categorizations of explanatory variables in linear regression via generalized fused Lasso2021

    • Author(s)
      Ohishi Mineaki、Okamura Kensuke、Itoh Yoshimichi、Yanagihara Hirokazu
    • Journal Title

      Smart Innovation, Systems and Technologies

      Volume: 238 Pages: 457-467

    • DOI

      10.1007/978-981-16-2765-1_38

    • ISBN
      9789811627644, 9789811627651
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Spatio-temporal adaptive fused Lasso for proportion data2021

    • Author(s)
      Yamamura Mariko、Ohishi Mineaki、Yanagihara Hirokazu
    • Journal Title

      Smart Innovation, Systems and Technologies

      Volume: 238 Pages: 479-489

    • DOI

      10.1007/978-981-16-2765-1_40

    • ISBN
      9789811627644, 9789811627651
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A high-dimensional bias-corrected AIC for selecting response variables in multivariate calibration2020

    • Author(s)
      Oda Ryoya、Mima Yoshie、Yanagihara Hirokazu、Fujikoshi Yasunori
    • Journal Title

      Communications in Statistics - Theory and Methods

      Volume: - Issue: 14 Pages: 1-24

    • DOI

      10.1080/03610926.2019.1705978

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Equivalence between adaptive Lasso and generalized ridge estimators in linear regression with orthogonal explanatory variables after optimizing regularization parameters2020

    • Author(s)
      Ohishi Mineaki、Yanagihara Hirokazu、Kawano Shuichi
    • Journal Title

      Annals of the Institute of Statistical Mathematics

      Volume: 72 Issue: 6 Pages: 1501-1516

    • DOI

      10.1007/s10463-019-00734-2

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Optimization of generalized Cp criterion for selecting ridge parameters in generalized ridge regression2020

    • Author(s)
      Ohishi Mineaki、Yanagihara Hirokazu、Wakaki Hirofumi
    • Journal Title

      Smart Innovation, Systems and Technologies

      Volume: 193 Pages: 267-278

    • DOI

      10.1007/978-981-15-5925-9_23

    • ISBN
      9789811559242, 9789811559259
    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] A Fast Optimization Method for Additive Model via Partial Generalized Ridge Regression2020

    • Author(s)
      Fukui Keisuke、Ohishi Mineaki、Yamamura Mariko、Yanagihara Hirokazu
    • Journal Title

      ntelligent Decision Technologies: Proceedings of the 12th KES International Conference on Intelligent Decision Technologies (KES-IDT-20)

      Volume: 193 Pages: 279-290

    • DOI

      10.1007/978-981-15-5925-9_24

    • ISBN
      9789811559242, 9789811559259
    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] A consistent variable selection method in high-dimensional canonical discriminant analysis2020

    • Author(s)
      Oda Ryoya、Suzuki Yuya、Yanagihara Hirokazu、Fujikoshi Yasunori
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 175 Pages: 104561-104561

    • DOI

      10.1016/j.jmva.2019.104561

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] A fast algorithm for optimizing ridge parameters in a generalized ridge regression by minimizing a model selection criterion2020

    • Author(s)
      Ohishi Mineaki、Yanagihara Hirokazu、Fujikoshi Yasunori
    • Journal Title

      Journal of Statistical Planning and Inference

      Volume: 204 Pages: 187-205

    • DOI

      10.1016/j.jspi.2019.04.010

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] A fast and consistent variable selection method for high-dimensional multivariate linear regression with a large number of explanatory variables2020

    • Author(s)
      Oda Ryoya、Yanagihara Hirokazu
    • Journal Title

      Electronic Journal of Statistics

      Volume: 14 Issue: 1 Pages: 1386-1412

    • DOI

      10.1214/20-ejs1701

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Evaluation of Consistency of Model Selection Criteria in Multivariate Linear Regression Models by Large-sample and High-dimensional Asymptotic Theory under Nonnormality2019

    • Author(s)
      栁原 宏和
    • Journal Title

      Journal of the Japan Statistical Society, Japanese Issue

      Volume: 49 Issue: 1 Pages: 133-159

    • DOI

      10.11329/jjssj.49.133

    • NAID

      130007827229

    • ISSN
      0389-5602, 2189-1478
    • Year and Date
      2019-09-30
    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Strong Consistency of Log-Likelihood-Based Information Criterion in High-Dimensional Canonical Correlation Analysis2019

    • Author(s)
      Oda Ryoya、Yanagihara Hirokazu、Fujikoshi Yasunori
    • Journal Title

      Sankhya A

      Volume: - Issue: 1 Pages: 109-127

    • DOI

      10.1007/s13171-019-00174-3

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Explicit solution to the minimization problem of generalized cross-validation criterion for selecting ridge parameters in generalized ridge regression2018

    • Author(s)
      Yanagihara, H.
    • Journal Title

      Hiroshima Mathematical Hournal

      Volume: 48 Issue: 2 Pages: 203-222

    • DOI

      10.32917/hmj/1533088835

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] GICとGCp: 高次元漸近理論の下での漸近性質の比較2022

    • Author(s)
      柳原宏和
    • Organizer
      第16回日本統計学会春季大会
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Coordinate descent algorithm for normal-likelihood-based group Lasso in multivariate linear regression2021

    • Author(s)
      Yanagihara, H., Oda, R.
    • Organizer
      13th International KES Conference, IDT-21
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Optimizations for categorizations of explanatory variables in linear regression via generalized fused Lasso2021

    • Author(s)
      Ohishi, M., Okamura, K., Itoh, Y., Yanagihara, H.
    • Organizer
      13th International KES Conference, IDT-21
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Spatio-temporal adaptive fused Lasso for proportion data2021

    • Author(s)
      Yamamura, M., Ohishi, M., Yanagihara, H.
    • Organizer
      13th International KES Conference, IDT-21
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] A consistent likelihood-based variable selection method in normal multivariate linear regression2021

    • Author(s)
      Oda, R., Yanagihara, H.
    • Organizer
      13th International KES Conference, IDT-21
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Generalized fused Lassoによる説明変数のカテゴリの最適化2021

    • Author(s)
      大石峰暉, 岡村健介, 伊藤嘉道, 柳原宏和
    • Organizer
      2021年度統計関連学会連合大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] Asymptotically KL-loss efficiency of GIC in normal multivariate linear regression models under the high-dimensional asymptotic framework2021

    • Author(s)
      小田凌也, 柳原宏和
    • Organizer
      2021年度統計関連学会連合大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] ロジスティック回帰モデルにおけるgeneralized fused Lassoの座標降下法2021

    • Author(s)
      大石峰暉, 山村麻理子, 柳原宏和
    • Organizer
      第15回日本統計学会春季集会
    • Related Report
      2020 Research-status Report
  • [Presentation] Post-selection Inference for linear regression via KOO method with general-formed variable selection criterion2021

    • Author(s)
      望月教平, 柳原宏和
    • Organizer
      第15回日本統計学会春季集会
    • Related Report
      2020 Research-status Report
  • [Presentation] Optimization of generalized Cp criterion for selecting ridge parameters in generalized ridge regression2020

    • Author(s)
      Ohishi, M., Yanagihara, H., Wakaki, H.
    • Organizer
      12th International KES Conference, IDT-20
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A fast optimization method for additive model via partial generalized ridge regression2020

    • Author(s)
      Fukui, K., Ohishi, M., Yamamura, M., Yanagihara, H.
    • Organizer
      12th International KES Conference, IDT-20
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 高次元多変量モデルにおける非正規下での変数選択法の一致性2019

    • Author(s)
      小田凌也・柳原宏和.
    • Organizer
      2019年度統計関連学会連合大会
    • Related Report
      2019 Research-status Report
  • [Presentation] Estimation of geographically varying coefficient model via group fused lasso2019

    • Author(s)
      大石峰暉・福井敬祐・岡村健介・伊藤嘉道・柳原宏和.
    • Organizer
      2019年度統計関連学会連合大会
    • Related Report
      2019 Research-status Report
  • [Presentation] Variable selection method for nonparametric varying coefficient model via group lasso penalty2019

    • Author(s)
      福井敬祐・大石峰暉・小田凌也・岡村健介・伊藤嘉道・柳原宏和
    • Organizer
      2019年度統計関連学会連合大会
    • Related Report
      2019 Research-status Report
  • [Presentation] Best subset selection in multivariate linear regressions via discrete first-order algorithms2019

    • Author(s)
      鈴木裕也・大石峰暉・小田凌也・柳原宏和
    • Organizer
      2019年度統計関連学会連合大会
    • Related Report
      2019 Research-status Report
  • [Presentation] High-dimensionality-adjusted consistent information criterion in multivariate linear models2019

    • Author(s)
      Yanagihara, H.
    • Organizer
      The 11th ICSA International Conference
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Consistent generalized Cp in high-dimensional multivariate linear models under nonnormality2018

    • Author(s)
      Yanagihara, H.
    • Organizer
      The 5th Institute of Mathematical Statistics Asia Pacific Rim Meeting
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A consistent variable selection method in the high-dimensional multiple responses linear regression2018

    • Author(s)
      Oda, R. & Yanagihara, H.
    • Organizer
      The 5th Institute of Mathematical Statistics Asia Pacific Rim Meeting
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] A fast algorithm for solving model selection criterion minimization problem in generalized ridge2018

    • Author(s)
      Ohishi, M. & Yanagihara, H.
    • Organizer
      The 5th Institute of Mathematical Statistics Asia Pacific Rim Meeting
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 大標本・高次元漸近理論による情報量規準の一致性の評価について2018

    • Author(s)
      柳原宏和
    • Organizer
      2018年度統計関連学会連合大会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Fused Lassoを用いた地域分類~マンションの賃料に対する地域効果のモデリング~2018

    • Author(s)
      大石峰暉, 福井敬祐, 岡村健介, 伊藤嘉道, 柳原宏和
    • Organizer
      2018年度統計関連学会連合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] ミンククジラの身体データを例とした粗密がある空間データでのFused Lassoによる空間効果の推定2018

    • Author(s)
      福井敬祐, 山村麻理子, 柳原宏和, Solvang, H. K., Oien, N., Haug, T.
    • Organizer
      2018年度統計関連学会連合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] Group Lasso 型罰則項を伴う重み付き残差平方和の最小化に基づく多変量線形回帰モデルの推定2018

    • Author(s)
      小田凌也, 柳原宏和
    • Organizer
      2018年度統計関連学会連合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] 正準判別分析における一致性を持つ高次元変数の選択法2018

    • Author(s)
      鈴木裕也, 小田凌也, 柳原宏和, 藤越康祝
    • Organizer
      2018年度統計関連学会連合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] Sparse Group Lasso を用いたGMANOVAモデルの変数選択2018

    • Author(s)
      永井 勇, 小田凌也, 柳原宏和
    • Organizer
      2018年度統計関連学会連合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] High-dimensionality adjusted asymptotically loss efficient GCp in normal multivariate linear models2018

    • Author(s)
      柳原宏和
    • Organizer
      日本数学会2018年度秋季総合分科会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi