• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Basic research on quality assurance of numerical simulations by visualizing the regularity of solutions of differential equations

Research Project

Project/Area Number 18K03436
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionDoshisha University

Principal Investigator

Imai Hitoshi  同志社大学, 理工学部, 教授 (80203298)

Co-Investigator(Kenkyū-buntansha) 藤原 宏志  京都大学, 情報学研究科, 准教授 (00362583)
磯 祐介  京都大学, 情報学研究科, 教授 (70203065)
Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywords品質 / 正則性 / 地図 / 数値計算 / 微分方程式 / 滑らかさ / 可視化 / 爆発 / 非整数階微分 / ヘルダー連続 / 振動現象 / 特異点 / 正則 / 数値解析
Outline of Final Research Achievements

We developed numerical methods to investigate the location of singular points of one-variable functions and their smoothness at singular points. We found that the interpolated function oscillates violently near the boundary, and that the oscillation is localized by local averaging. For nonlinear ordinary differential equations with blow-up solutions, we developed highly accurate numerical methods for the blow-up time using the numerical limit, and succeeded in creating numerical regularity maps of the solution. For fractional differential equations with Helder continuous solutions, we succeeded in creating numerical regularity maps of the solution. They show that the property of the Caputo derivative changes whether the order is greater than or less than 1. We also found that the accuracy spike phenomenon occurs. We developed highly accurate numerical integration methods when the integrand has a sharp peak, and also developed methods for fast numerical computations.

Academic Significance and Societal Importance of the Research Achievements

学術的意義は理論研究の発展や研究者人口の拡大への貢献にある。それには、本課題研究が基礎とする数値計算の汎用性、その数値計算による数学的性質の可視化が重要な役割を果たす。社会的意義は正確な数理モデル構築の貢献にある。数値計算の汎用性から、計算対象の問題や方程式は実用レベルの複雑なものが扱える。例えば本課題研究が想定した微分積分方程式は、世界最先端の近赤外光を使った癌治療法である光免疫療法に関連する。非整数階微分方程式は血糖値変化の数理モデルに現れる。本課題研究で提案した問題や解の数学的性質を数値計算で明らかにする研究は、このような実用問題に対して正確なモデルを構築する際に役立つ。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (9 results)

All 2021 2020 2019

All Journal Article (6 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 5 results,  Open Access: 2 results) Presentation (3 results)

  • [Journal Article] Development of a High-Precision Numerical Method for Integration over One Period of Periodic Functions with a Sharp Peak2021

    • Author(s)
      Hirokazu Ito, Hitoshi Imai, Takuya Ooura
    • Journal Title

      Adv. Math. Sci. Appl.

      Volume: 30 Pages: 175-189

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Numerical Regularity Map for Blow-Up Solutions of Nonlinear Ordinary Differential Equations2020

    • Author(s)
      Hiroko Soutome, Hitoshi Imai
    • Journal Title

      Adv. Math. Sci. Appl.

      Volume: 29 Pages: 393-402

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Numerical Reconstruction of Radiative Sources in an Absorbing and Nondiffusing Scattering Medium in Two Dimensions2020

    • Author(s)
      Fujiwara Hiroshi、Sadiq Kamran、Tamasan Alexandru
    • Journal Title

      SIAM Journal on Imaging Sciences

      Volume: 13 Issue: 1 Pages: 535-555

    • DOI

      10.1137/19m1282921

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Numerical realization of a new generation tomography algorithm based on the Cauchy-type integral formula2019

    • Author(s)
      Hiroshi Fujiwara, Alexandru Tamasan
    • Journal Title

      Adv. Math. Sci. Appl.

      Volume: 28 Pages: 413-424

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A Fourier approach to the inverse source problem in an absorbing and anisotropic scattering medium2019

    • Author(s)
      Fujiwara Hiroshi、Sadiq Kamran、Tamasan Alexandru
    • Journal Title

      Inverse Problems

      Volume: 36 Issue: 1 Pages: 015005-015005

    • DOI

      10.1088/1361-6420/ab4d98

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] スペクトル選点法による1変数関数の特異性に関する基礎的な数値実験2019

    • Author(s)
      今井仁司,坂口秀雄
    • Journal Title

      同志社大学ハリス理化学研究報告

      Volume: 59(4) Pages: 217-226

    • Related Report
      2018 Research-status Report
    • Open Access
  • [Presentation] 1次元非整数階微分方程式のCauchy問題のヘルダー連続解に対する数値解析2021

    • Author(s)
      加藤真菜、藤原宏志、今井仁司
    • Organizer
      北陸応用数理研究会2021
    • Related Report
      2020 Annual Research Report
  • [Presentation] 鋭いピークを有する周期関数の1周期にわたる積分に対する高精度数値計算法の開発2021

    • Author(s)
      伊藤寛和、今井仁司
    • Organizer
      北陸応用数理研究会2021
    • Related Report
      2020 Annual Research Report
  • [Presentation] 分数階微分方程式のヘルダー連続解に対する数値実験2019

    • Author(s)
      加藤 真菜、藤原 宏志、東森 信就、 今井 仁司
    • Organizer
      第65回理論応用力学講演会・第22回土木学会応用力学シンポジウム
    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi