Integrated thermophysical property analysis of live cells by photothermal microscopy
Project/Area Number |
18K03561
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 13040:Biophysics, chemical physics and soft matter physics-related
|
Research Institution | Wakayama University |
Principal Investigator |
Jun Miyazaki 和歌山大学, システム工学部, 講師 (50467502)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 光熱変換顕微鏡 / 生細胞イメージング / 熱伝導 / ミトコンドリア / ミクロ熱物性 / 無標識イメージング / リソソーム / 光熱変換顕微計測法 / 熱物性計測 / 極微スケール熱伝導 / 生細胞 |
Outline of Final Research Achievements |
This study aims to develop an optical method for measuring heat conduction inside a cell based on photothermal microscopy. Using this system, we aimed to reveal the relationship between heat and cellular function and the cause of the temperature imbalance observed inside a cell. This project developed a novel photodetector and optical setup that enable high-sensitivity and high-fidelity photothermal imaging of mitochondria in live cells. We demonstrated the effectiveness of the simultaneous multi-frequency method for measuring the thermal conductivity of moving objects. We identified cellular organelles observed by photothermal microscope and examined optimal culture conditions for selective imaging of mitochondria. Subsequently, thermal conductivity measurements in the vicinity of mitochondria were performed.
|
Academic Significance and Societal Importance of the Research Achievements |
がん細胞などの病態細胞では亢進した熱発生があること、細胞活性に依存して熱伝導率が変化することが報告されており、本研究で開発した熱物性計測法は新規診断,治療法の開発に貢献すると期待できる。さらにナノテクノロジーを基盤とするマイクロマシン、ナノマシンの高効率・高速動作にはまさつの制御と熱散逸過程の把握がキーポイントとなり、本研究で提案したミクロな熱物性測定法はその実現に貢献できる。
|
Report
(5 results)
Research Products
(14 results)