Project/Area Number |
18K03580
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 14020:Nuclear fusion-related
|
Research Institution | Hokkaido University |
Principal Investigator |
Yamauchi Yuji 北海道大学, 工学研究院, 准教授 (80312388)
|
Co-Investigator(Kenkyū-buntansha) |
越崎 直人 北海道大学, 工学研究院, 特任教授 (40344197)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 核融合炉開発 / トリチウム吸蔵体 / レーザープロセス / 核融合炉用水素同位体吸蔵体開発 / パラジウム / トリチウム / サブミクロン球状化により水素吸収・脱離特性変化 / Pdの水素吸収量が増加 / Pd中に新水素捕獲サイトが形成 |
Outline of Final Research Achievements |
In the present study, we aimed development of new hydrogen isotope occlusion body. Sub-micrometer palladium spherical particles were prepared by laser melting in liquid method, then their hydrogen absorption and desorption properties were evaluated. We found new hydrogen trapping site were formed in the spherical particles in addition to the sites in pristine palladium raw materials. Hydrogen adsorption and desorption experiments at room temperature under atmospheric pressure indicated large adsorption capacity for the particles prepared in water, compared with that in ethanol. 30 iteration experiment of the hydrogen adsorption/desorption at room temperature showed no change in hydrogen absorption and desorption properties. Enthalpy of hydride formation for the prepared spherical particles became smaller than that for the raw materials. These results suggest the preparation of palladium particles by the laser melting method might make its hydrogen occlusion properties better.
|
Academic Significance and Societal Importance of the Research Achievements |
核融合反応は、燃料がほぼ無尽蔵である点、核反応による暴走事故がない点等から、究極の基幹エネルギー源として期待されている。一方、発電炉として成立するための課題も多い。反応条件が比較的緩い重水素(D)-三重水素(T)反応を用いた発電炉実現に向け現在研究開発が進められているが、課題の一つとして燃料の一つであるTの貯蔵システム開発がある。放射性物質である大量のTを安全・安定に貯蔵し、必要に応じて抽出する必要があるが、現在そのような貯蔵体を用いたシステムはない。 本研究で得た、および今後の展開で得られる知見は、核融合炉用大容量高効率水素同位体吸蔵体の開発のため非常に有用である。
|