Measurement of translational temperature of atomic radicals using self-absorbing incoherent light source
Project/Area Number |
18K03601
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 14030:Applied plasma science-related
|
Research Institution | Meijo University |
Principal Investigator |
Takeda Keigo 名城大学, 理工学部, 准教授 (00377863)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | 吸収分光 / プラズマ / 原子状ラジカル / 吸収分光法 / プラズマプロセス / エネルギー / 絶対密度 |
Outline of Final Research Achievements |
In this study, a self-absorbing VUV light source for VUV absorption spectroscopy (VUVAS) to detect atoms has been developed using a micro-discharge hollow cathode discharge lamp (MHCL) with hydrogen and helium gas mixture, and an inductively coupled hydrogen gas plasma (ICP) was measured by VUVAS using the self-absorbing VUV light source. From the results, it was found that absorption intensity of H atom in the ICP was lower than 1% when hydrogen partial pressure in MHCL and an absorption length in ICP were 500 Pa and 34 mm. This result indicates the self-absorbing VUV light source has a potential to use as a VUV light source for measuring the background absorption near the edge of absorption line of target atom. On the other hand, from measurement results of change in absorption intensity as a function of hydrogen partial pressure in MHCL, we confirmed the possibility of measuring the temperature change of atoms in the plasma using the VUVAS with the self-absorbing VUV light source.
|
Academic Significance and Societal Importance of the Research Achievements |
近年、プラズマを使用した一原子層レベルのプロセス反応を高精度に制御する技術が注目されている。これら技術に更なる発展をもたらすには、プロセス反応に重要な働きをする原子状ラジカルをより一層高精度に計測する技術の確立は必須であり、プラズマエレクトロニクス分野の学術基盤を更に発展させるうえで大きな課題となっている。本研究で実現された光源およびそれを用いた真空紫外吸収分光法は、これら重要な原子状ラジカルの高精度計測を実現するものであり、これによって得られる知見は上記の研究領域の学術的な更なる発展を促すとともに、産業界における技術の発展などへの与える影響も極めて大きいと言える。
|
Report
(5 results)
Research Products
(14 results)