Project/Area Number |
18K03815
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 17040:Solid earth sciences-related
|
Research Institution | Japan Agency for Marine-Earth Science and Technology |
Principal Investigator |
Furuichi Mikito 国立研究開発法人海洋研究開発機構, 付加価値情報創生部門(数理科学・先端技術研究開発センター), グループリーダー (50415981)
|
Project Period (FY) |
2018-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | DEM / 付加体 / 大規模計算 / 応力鎖 / 地質構造発達 / SHmax / 構造発達 / 岩石破壊 / 堆積層 / HPC / 地震発生 / 数値シミュレーション / 岩石3軸圧縮実験 / 砂箱実験 / 沈み込み帯 / 大規模シミュレーション |
Outline of Final Research Achievements |
In this study, large-scale DEM simulations were used to model the structural evolution of the accretionary wedge and to investigate the role of granularity in tectonics. In real-scale numerical sandbox experiments, we found that arcuate stress chains spontaneously formed during faulting and undulation structures developed. This suggests that crustal deformation can arise not only from geological-scale heterogeneities, but also from microscopic heterogeneities. In addition, in numerical rock-box simulations with added cohesive forces, we successfully reproduced the fault structures characteristic of an accretionary wedge and found that the healing of cohesive forces significantly influences fault development. Furthermore, our simulation showed fast element motions that generate elastic waves, and obtained results that showed reasonable behavior in terms of wave propagation and fault rupture velocities of seismic event.
|
Academic Significance and Societal Importance of the Research Achievements |
付加体内部の応力状態を理解することは、地震発生や日本列島の成り立ちを解明する重要な手がかりとなります。そこで、付加体的な構造発達を大規模粒状体シミュレーションを用いて研究しました。そして、断層形状の初期発達において、断層形成時に粒子が集団運動を介してアーチ状の応力構造を自発的に形成することで、断層が水平方向に湾曲することを発見しました。この結果は、大域的な断層の湾曲が、従来議論されてきた海山やプレート運動といった地質学スケールの不均質性だけでなく、地殻に内在する微視的な不均質が集団運動を介して現れる巨視的な変形、つまりスケールをまたいだ地殻の変形プロセスにも起因し得ることを示唆しています。
|