Stress and deformation analyses of elastic body without contact generated by intermolecular forces and its application to the next generation ultra-high density magnetic recording
Project/Area Number |
18K03908
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 18040:Machine elements and tribology-related
|
Research Institution | Tottori University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
福井 茂壽 鳥取大学, 工学研究科, 特任教授 (40273883)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 表面力 / 応力分布 / 非接触状態の応力分布 / 材料分布によるせん断応力 / 材料分布による表面間力の変化 / 超高精度測定 / 球面・平面間の応力分布 / 引き離し速度依存性 / ミンドリンの解 / 表面間力 / 弾性変形 / 材料分布による表面間応力の変化 |
Outline of Final Research Achievements |
Stress acting on the molecules in a body that consists of homogeneous material generated by the molecules in another body that has 1- or 2-dimensional material distribution in in-plane direction was calculated from the Lennard-Jones potential that includes the intermolecular attractive and repulsive forces. The dependence of surface force on the withdrawal speed, which is one of the time-dependent characteristics, was observed by using a surface force apparatus and its characteristics were clarified. Furthermore, the repulsive force by gas-film lubrication was considered in addition to the surface force, in order to introduce the above theory into analyses of flying characteristics of a magnetic head.
|
Academic Significance and Societal Importance of the Research Achievements |
弾性体が非接触の状態において、分子間力に起因する表面間応力(垂直・せん断応力)分布および弾性変形の基本特性を理論的に計算する手法を構築し、その基本特性を解明した。弾性体に対する分子間力による応力と弾性変形の系統的な研究は皆無であるため、学術的な独自性・先駆性をもつと共に、次世代高密度磁気記録技術において今後確実に重要になると考えられ、創造性・先進性に富むものである。また、磁気ディスク装置の超高記録密度化のみならず、同様の問題を包含するすべての科学技術(例えば、MEMS/NEMSの設計手法,接触・凝着理論,複合材料の相互作用の解明等)の発展に大きく寄与し得る汎用性・応用性の高いものである。
|
Report
(4 results)
Research Products
(19 results)