• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Prediction of scattering properties of gas molecule based on machine learning and search for functional nano-interfaces

Research Project

Project/Area Number 18K03960
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 19010:Fluid engineering-related
Research InstitutionKochi National College of Technology

Principal Investigator

Takeuchi Hideki  高知工業高等専門学校, ソーシャルデザイン工学科, 教授 (30435474)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Keywords高Knudsen数流れ / Gas-Surface Interaction / 反射境界条件 / 分子速度分布関数 / 適応係数 / 機械学習 / 流体工学 / 希薄気体力学 / 分子動力学
Outline of Final Research Achievements

Accurate understanding of the thermal flow characteristics of gases in high Knudsen number flows requires an appropriate treatment of the gas molecular reflection boundary condition at the object interface. A reflection model based on machine learning was constructed to predict the scattering characteristics of gas molecules, considering various factors, including the thermal flow conditions of the flow field and the state of the interface. It was confirmed that the model is effective in predicting macroscopic physical quantities such as the accommodation coefficient. Furthermore, the usefulness of the constructed model in considering functional nano-interfaces was also indicated.

Academic Significance and Societal Importance of the Research Achievements

高Knudsen数流れの系での気体の熱的・流体力学的特性の理解には,物体界面での気体分子散乱特性の解明が重要となる.流れ場の様々な因子を考慮した分子シミュレーション解析に基づく気体分子散乱データから気体分子散乱挙動の予測に有効な反射モデルを機械学習により構築する方法を実現した.構築モデルより求められる分子速度分布関数から,界面構造の違いによる流れ場への影響を予測することで,機能性ナノ界面の把握に有効となる.

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (10 results)

All 2023 2022 2021 2020 2019

All Presentation (10 results) (of which Int'l Joint Research: 2 results)

  • [Presentation] 金表面での気体分子の散乱挙動予測2023

    • Author(s)
      武内 秀樹,小野 龍生
    • Organizer
      日本機械学会2023年度年次大会, No.23-1, J051-02
    • Related Report
      2023 Annual Research Report
  • [Presentation] Prediction of Reflection Characteristics for Gas Molecules on Au Surfaces2023

    • Author(s)
      Ryusei Ono, Hideki Takeuchi
    • Organizer
      The 1st KOSEN International Research Symposium (KRIS2023), No. 164
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] 金表面における気体分子散乱特性の予測2022

    • Author(s)
      小野 龍生, 小﨑 祐助, 武内 秀樹
    • Organizer
      日本機械学会2022年度年次大会, No.22-1, J051p-03
    • Related Report
      2022 Research-status Report
  • [Presentation] 金表面での気体分子散乱挙動の分子論的解析2022

    • Author(s)
      小﨑 祐助, 武内 秀樹
    • Organizer
      日本機械学会 中国四国支部 第60期総会・講演会, 06c2
    • Related Report
      2021 Research-status Report
  • [Presentation] 固体表面における気体分子反射特性の予測2021

    • Author(s)
      武内秀樹,楠瀬 宏規
    • Organizer
      日本機械学会2021年度年次大会, No.21-1, J052-07
    • Related Report
      2021 Research-status Report
  • [Presentation] 固体表面での気体分子散乱挙動の予測2020

    • Author(s)
      楠瀬 宏規, 武内秀樹
    • Organizer
      日本機械学会2020年度年次大会, No.20-1, J05217
    • Related Report
      2020 Research-status Report
  • [Presentation] 固体表面における気体分子散乱特性の分子動力学的解析2020

    • Author(s)
      小﨑 祐助, 武内秀樹
    • Organizer
      第34回数値流体力学シンポジウム, B09-4
    • Related Report
      2020 Research-status Report
  • [Presentation] 水分子吸着表面での気体分子の散乱挙動予測2020

    • Author(s)
      楠瀬 宏規, 武内秀樹
    • Organizer
      第34回数値流体力学シンポジウム, B11-4
    • Related Report
      2020 Research-status Report
  • [Presentation] Prediction of scattering properties for gas molecules on solid surfaces2019

    • Author(s)
      Hiroki Kusunose, Hideki Takeuchi
    • Organizer
      72nd Annual Meeting of the APS Division of Fluid Dynamics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 機械学習による固体表面での気体分子散乱特性の予測2019

    • Author(s)
      楠瀬 宏規, 武内秀樹
    • Organizer
      日本機械学会2019年度年次大会
    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi