Project/Area Number |
18K03972
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 19020:Thermal engineering-related
|
Research Institution | Hokkaido University (2020) Tokyo Institute of Technology (2018-2019) |
Principal Investigator |
Uemura Suguru 北海道大学, 工学研究院, 准教授 (70515163)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | リチウム空気電池 / 酸素輸送 |
Outline of Final Research Achievements |
The lithium-air battery is the secondary battery with the largest theoretical capacity. However, high rate discharge required for practical use cannot be realized. Because the low oxygen diffusivity in the electrolyte limits the discharge performance. In this study, the positive electrode performance was improved by irradiating ultrasonic waves to enhance the oxygen transport in the positive electrode by inducing convection and improving diffusivity. As a result, it was found that ultrasonic waves induce an acoustic flow on the electrode. It was clarified that the positive electrode overvoltage is reduced during discharge.Furthermore, ultrasonic waves were applied to the positive electrode where solid precipitates were generated due to the discharge, and removal of the precipitates was attempted. However, the precipitate did not easily peel off from the reaction surface of the porous electrode.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で活用した超音波照射による酸素輸送の促進は,リチウム空気電池に限らず電解液を用いる多様な電気化学デバイス内で生じる物質輸送現象に活用でき,理学・工学の広範囲の学術領域で使用される新規性がある.さらに研究対象であるリチウム空気電池については,その理論容量の大きさから,電気自動車用の重要な電源となるだけでなく,再生可能エネルギーの利用・普及に向けた,大容量かつ安全な蓄電デバイスとしても重要な役割が果たせる.本研究で対象とする水系リチウム空気電池では電解液に塩化リチウム水溶液を用いるため,従来の有機電解液を用いたリチウムイオン電池のような,短絡時の火災リスクも大幅に低減できる.
|