Project/Area Number |
18K03990
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 19020:Thermal engineering-related
|
Research Institution | Sophia University |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | 高圧衝撃波管 / 着火遅れ / ノッキング / 低温酸化 / 冷炎 / 反応モデル / 衝撃波管 / 高温持続時間 / 自着火 |
Outline of Final Research Achievements |
Chemical shock tubes are reaction vessels that utilize shock wave compression, and because they can instantly and uniformly increase the pressure and temperature of sample gas, they have been widely used in research on high-temperature chemical reactions and ignition above 1000 K. However, a drawback of this device is that the time during which the shock-wave-heated sample gas is maintained at a high temperature (high-temperature duration) is extremely short, usually 1 to 1.5 milliseconds. In this study, we developed a device to extend the high-temperature duration of high-pressure shock tubes, which are now increasingly used in the engineering field. As a result, we were able to extend the high-temperature duration to 32 milliseconds, and applied it to chemical research to elucidate the knock phenomenon in automobile engines, and established a method for tracking chemical reactions in the intermediate temperature range of 650 to 1000 K.
|
Academic Significance and Societal Importance of the Research Achievements |
通常の衝撃波管の高温持続時間は1~1.5ミリ秒ほどであるため,例えばエンジン自着火の研究においては1000 K以上の高温現象のみが観測できるにすぎなかった。エンジンの高効率化において一番の障害となっているノッキング現象は,温度650~1000 Kで起こるいわゆる『低温酸化反応』の解明が問題解決の鍵を握る。本研究の成果として,高圧衝撃波管の高温持続時間を従来の1~1.5ミリ秒から32ミリ秒に延長できたので,低温着火研究を実施することにより,エンジンシミュレーションのための詳細反応モデルの検証が可能となり,高効率エンジン開発さらには地球温暖化対策に大きく貢献することができた。
|