Project/Area Number |
18K04007
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 20010:Mechanics and mechatronics-related
|
Research Institution | Yokohama National University (2020-2021) Tokyo Institute of Technology (2018-2019) |
Principal Investigator |
Hara Kensuke 横浜国立大学, 大学院工学研究院, 准教授 (70508259)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥260,000 (Direct Cost: ¥200,000、Indirect Cost: ¥60,000)
Fiscal Year 2019: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | 拘束系の力学 / 流体構造連成 / マルチボディダイナミクス / 微分代数方程式 / ALE有限要素法 / 流体構造連成問題 / 同調スロッシングダンパー / スロッシング / 拘束系の動力学 |
Outline of Final Research Achievements |
The highly-developed numerical analysis is one of the most important techniques for the development of the next-generation mechanical design based on the AI technique, manufacturing technique using 3D printer and so on. In particular, methods to connect subsystems, such as mathematical description of joint components and the fluid-structure interaction, have a great influence on simulation results. This study develops a new analytical framework for the fluid-structure interaction problem based on the theory for constrained systems. The concept of the proposed formulation is based on the analogy between the dynamic equilibrium on the interface between the fluid and structure and mathematical treatments of the connection of mechanical components used in the structural dynamics. As a result, it is shown that the interaction between the fluid and structure can be expressed as the constrained system. Moreover, new numerical integration techniques for the constrained systems are developed.
|
Academic Significance and Societal Importance of the Research Achievements |
マルチスケール・マルチフィジックス問題を対象とした高度な数値計算法をAI技術を利用した次世代構造最適化法や3Dプリンタによる加工技術と結びつける上で,部品の統合による機械全体の構築や流体構造連成など,モデルや物理現象の異なる多数のサブシステムを連成させる方法の高度化が鍵となっている.本研究では,機構の運動解析でジョイントの結合に用いる方法と流体と構造の界面での力のつり合いを用いた連成法の間のアナロジーから着想を得た,新しい流体構造連成問題の解析法の構築を行った.さらに,提案する方法が,流体と構造の連成現象を扱うための基礎理論に対して及ぼす影響について調査した.
|