Project/Area Number |
18K04032
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 20010:Mechanics and mechatronics-related
|
Research Institution | Aichi Institute of Technology |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 劣駆動系 / 最適制御多点境界値問題 / クアッドロータ― / 卓球ロボット / クアッドローター / 劣駆動 / 最適制御 / 多点境界値問題 |
Outline of Final Research Achievements |
This research aims to develop optimal control problems for underactuated systems with multi-point boundary values and their real-time solver algorithms. In order to do that, the motion control of the quadcopter is considered as well as the return ball control of the table tennis robot, then their formulations are generalized to more general control problems. The obtained results are that (a)two kinds of formulations are derived for optimal control problems for underactuated systems with multi-point boundary values have been introduced, (b) as their solvers, real-time processing algorithms have been introduced, (c)some relationship between the rotor arrangement of the quadcopter and its motion constraints have been clarified, (d)in the table tennis robot, it has been clarified how the racket's return speed and posture influence the ball’s position and speed at the opponent court. d. The experiments were generally successful, however hardware improvements remained the future issues.
|
Academic Significance and Societal Importance of the Research Achievements |
福祉・介護や家庭など、人間の普段の生活の中で知能機械が活躍するためには、知能機械が外部環境を実時間で認識できるとともに、絶対時刻の流れの下で、時刻時々刻々変化する外部環境に適合した安全な動作が求められる。この絶対時刻制御は、非線形ダイナミクスに支配される制御対象に対して、複数の目標位置・姿勢・速度をそれぞれ指定された絶対時刻に達成する最適制御多点境界値問題として定式化される。本研究では、申請者が明らかにしてきた全駆動系の最適制御多点境界値問題とその実時間解法を劣駆動系の問題と実時間解法に発展させることを目的としたものである。
|