Basic study on high-accuracy acoustic property measurements of biological specimens by ultrasonic microscopy
Project/Area Number |
18K04160
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 21030:Measurement engineering-related
|
Research Institution | Tohoku University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
金井 浩 東北大学, 工学研究科, 教授 (10185895)
西條 芳文 東北大学, 医工学研究科, 教授 (00292277)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 計測工学 / 超音波顕微鏡 / 音速 / 厚さ / 生体試料 / 集束超音波 |
Outline of Final Research Achievements |
In this study, we proposed a robust analysis method for the acoustic properties of biological specimens measured by acoustic microscopy. To obtain the velocity and thickness of the specimen, parabolic approximation was performed to determine the frequency at which the amplitude of the normalized spectrum became maximum or minimum, considering the sound speed and thickness of the specimens and the operating frequency of the ultrasonic device used. The proposed method was demonstrated for a specimen of malignant melanoma of the skin by using acoustic microscopy attaching a concave transducer with a center frequency of 80 MHz. The variations in sound speed and thickness analyzed by the proposed method were markedly smaller than those analyzed by the method based on an autoregressive model. The proposed method is useful for the analysis of the acoustic properties of biological tissues or cells.
|
Academic Significance and Societal Importance of the Research Achievements |
生体組織や細胞など微小領域の音響特性を観察する手段を目指して、超音波顕微鏡が開発されてきた。生体試料においては、生体試料とカプラとして用いる液体との音響インピーダンスの差が小さいため、表面からの反射信号の振幅が小さくS/Nが低下し、音響特性の計測精度が劣化する。本研究では、このようなS/Nが低い場合でも精度の高い音響特性を得るためのロバストな解析法を開発した。これにより、生体組織の基礎特性の蓄積や細胞のバイオメカニクスの解明に貢献できる。
|
Report
(4 results)
Research Products
(45 results)