• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Application of deep learning and GMFH-type neural network for medical image diagnosis and affective engineering

Research Project

Project/Area Number 18K04206
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 21040:Control and system engineering-related
Research InstitutionThe University of Tokushima

Principal Investigator

TAKAO Shoichiro  徳島大学, 大学院医歯薬学研究部(医学域), 准教授 (30363146)

Co-Investigator(Kenkyū-buntansha) 上野 淳二  徳島大学, 大学院医歯薬学研究部(医学域), 非常勤講師 (60116788)
近藤 正  徳島大学, 大学院医歯薬学研究部(医学域), 名誉教授 (80205559)
Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords深層学習 / 医用画像認識 / GMDH型人工知能技術 / 医用画像診断 / 感性工学
Outline of Final Research Achievements

In this study, the deep hybrid neural networks which are constructed with the deep Group Method of Data Handling (GMDH)-type neural network and the convolutional neural network (CNN), is developed and these hybrid algorisms are applied to the medical image analysis of MRI images of the brain regions, the medical image analysis of X-ray CT images of the chest and the abdominal regions. The deep GMDH-type neural network can automatically organize the optimal deep neural network architectures. In this study, the deep neural networks which are used to recognize many organs, are automatically organized using the deep hybrid neural networks, and the recognition results are compared with the results of the conventional three-layered neural networks and it is shown that the hybrid neural networks are useful for the medical image recognitions of many organs.

Academic Significance and Societal Importance of the Research Achievements

本研究では、ディープGMDH-typeニューラルネットワークとCNNを組み合わせたハイブリッド型ニューラルネットワークを開発した。ディープGMDH-typeニューラルネットワークは、多くの中間層を持つニューラルネットワーク構造を自動的に自己組織でき、いろいろな臓器の医用画像認識問題に対して、最適な複雑さをしたネットワーク構造を自動的に自己組織できる。このような機能を備えた機械学習の数学アルゴリズムは他にない。本研究では、頭部、胸部、腹部のいろいろな臓器に対してハイブリッド型アルゴリズムを適用してその有効性を確認した。本アルゴリズムは汎用性が高く、他の分野にも簡単に応用が可能である。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (10 results)

All 2021 2020 2019 2018

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (7 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] Hybrid deep neural network of deep multi-layered GMDH-type neural network and convolutional neural network and its application to medical image recognition of chest regions.2021

    • Author(s)
      Shoichiro Takao, Sayaka Kondo, Junji Ueno, Tadashi Kondo
    • Journal Title

      Proceedings of the twenty-sixth international symposium on artificial life and robotics

      Volume: - Pages: 353-359

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Medical image analysis of X-ray CT images using hybrid deep neural network of deep feedback GMDH-type neural network and convolutional neural network2020

    • Author(s)
      Shoichiro Takao, Sayaka Kondo, Junji Ueno and Tadashi Kondo
    • Journal Title

      Proceedings of the twenty-fifth international symposium on artificial life and robotics 2020

      Volume: - Pages: 435-442

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Medical image recognition of brain regions using deep multi-layered GMDH-type neural network and convolutional neural network2019

    • Author(s)
      Shoichiro Takao, Sayaka Kondo, Junji Ueno and Tadashi Kondo
    • Journal Title

      Proceedings of the twenty-fourth international symposium on artificial life and robotics 2019

      Volume: - Pages: 115-121

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Hybrid deep neural network of deep multi-layered GMDH-type neural network and convolutional neural network and its application to medical image recognition of chest regions2021

    • Author(s)
      Shoichiro Takao, Sayaka Kondo, Junji Ueno, Tadashi Kondo
    • Organizer
      The twenty-sixth international symposium on artificial life and robotics 2021 (AROB 26th 2021)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] ディープ多層構造型GMDH-typeニューラルネットワークとCNNを用いた胸部画像の医用画像解析2020

    • Author(s)
      近藤正、高尾正一郎、近藤明佳、上野淳二
    • Organizer
      第34回人工知能学会全国大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Medical image analysis of X-ray CT images using hybrid deep neural network of deep feedback GMDH-type neural network and convolutional neural network2020

    • Author(s)
      Shoichiro Takao, Sayaka Kondo, Junji Ueno and Tadashi Kondo
    • Organizer
      The twenty-fifth international symposium on artificial life and robotics 2020 (AROB 25th 2020) (国際会議)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] ディープロジスティックGMDH-typeニューラルネットワークとCNNを用いた頭部MRI画像の医用画像認識2019

    • Author(s)
      近藤正、高尾正一郎、近藤明佳、上野淳二
    • Organizer
      第33回人工知能学会全国大会
    • Related Report
      2019 Research-status Report
  • [Presentation] ディープフィードバック型GMDH-typeニューラルネットワークとCNNを用いたX線CT画像の医用画像解析2019

    • Author(s)
      近藤正、高尾正一郎、近藤明佳、上野淳二
    • Organizer
      医療情報学会・人工知能学会AIM合同研究会
    • Related Report
      2019 Research-status Report
  • [Presentation] Medical image recognition of brain regions using deep multi-layered GMDH-type neural network and convolutional neural network2019

    • Author(s)
      Shoichiro Takao, Sayaka Kondo, Junji Ueno and Tadashi Kondo
    • Organizer
      The twenty-fourth international symposium on artificial life and robotics 2019 (AROB 24th 2019)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] ディープGMDH-typeニューラルネットワークとコンボリューショナルニューラルネットワークを用いた臓器の自動医用画像認識2018

    • Author(s)
      近藤正、高尾正一郎、近藤明佳、上野淳二
    • Organizer
      医療情報学会・人工知能学会AIM合同研究会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi