Project/Area Number |
18K04209
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 21040:Control and system engineering-related
|
Research Institution | Tokyo Metropolitan University |
Principal Investigator |
Kojima Akira 東京都立大学, システムデザイン研究科, 教授 (80234756)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | ゲインスケジュールド制御 / 線形パラメータ変動システム / ロバスト制御 / 線形行列不等式 / 非線形アファイン基底 |
Outline of Final Research Achievements |
Parameter-dependent LMIs (linear matrix inequalities) have been playing a crucial role in characterizing the controller design for parameter varying systems, and comprehensive design methods have been established for linear parameter varying systems. However, the parameter-dependent LMIs are generally difficult to compute, and efficient computation methods have been required in order to broaden the practical application fields. In this research, we propose a computation method for polynomial parameter-dependent LMIs based on the Bernstein basis with parameter region partitioning. Furthermore, it is shown that the conservativeness of the proposed method is characterized in terms of the parameter region partitioning, and the solution accuracy is recovered at the 2nd order of the maximal region size. The proposed methods are applied to the gain scheduled control for mechatronics and power grid systems, and the features of the resulting systems are discussed.
|
Academic Significance and Societal Importance of the Research Achievements |
制御システムを構成する上で重要な課題は,広い動作範囲で適切な動きを保証することであり,このような課題を克服するために,ゲインスケジュールド制御法が広く用いられてきた.しかしながら,その設計には負荷の高い計算を要し,また性能の検証が容易でないという課題があった.本研究は,これらの設計に利用可能な計算法を,Bernstein基底とよぶ非線形基底を導入することにより導き,原問題を任意の精度で解き,設計上達成できる性能を検証できることを示した.そして提案法を,自然エネルギー大量導入時の系統制御問題,機械系の制御問題に適用し,その特徴を明らかにした.
|