Project/Area Number |
18K04233
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 21050:Electric and electronic materials-related
|
Research Institution | Toyohashi University of Technology |
Principal Investigator |
Sekiguchi Hiroto 豊橋技術科学大学, 工学(系)研究科(研究院), 准教授 (00580599)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | ユーロピウム / 窒化ガリウム / ナノコラム / GaN / Eu / 光物性 / 希土類元素 / 量子情報デバイス / フォトニック結晶 |
Outline of Final Research Achievements |
Since photon computers can realize a parallel computer, which contributes to the development of artificial intelligence, the development of prediction of natural phenomena, and a wide range of fields, the development of elemental technologies is urgently needed. A quantum memory with a long quantum information retention time can be realized by utilizing an Eu atom with a quantum level with little energy fluctuation, but a host material suitable for integration has not been found. In this study, we focused on nitride semiconductors with Eu atoms. For efficient use of the quantum level of Eu atoms, we tried to improve the quality by using nanocolumns that do not contain threading dislocation in the crystal and exhibit strain relaxation effect. . We worked on nanocrystal shape control technology to uniform quantum level. These research contributes the realization of a quantum information device that can be integrated.
|
Academic Significance and Societal Importance of the Research Achievements |
結晶中にEu原子を効率よく活性化するために,Euを均一に取り込みかつ,光学遷移を活性化させる必要がある。しかしながら,活性化のための抜本的な解決策は見出されておらず,今回取り組んだナノコラム結晶の利用はこの問題を解決できる可能性を秘めている。選択成長技術を見出すことで,均一な取り込み制御と発光効率の向上が期待でき,その可能性の模索が行われた。このような技術が見出されれば,量子コンピューティングだけでなく,室温で明るい単一光源や外部環境に依存せず高い波長安定性を有する赤色発光デバイス,超小型増幅器の集積化にも貢献すると期待できる。
|