Project/Area Number |
18K04283
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 21060:Electron device and electronic equipment-related
|
Research Institution | Kyoto Institute of Technology |
Principal Investigator |
Yamashita Kaoru 京都工芸繊維大学, 電気電子工学系, 教授 (40263230)
|
Co-Investigator(Kenkyū-buntansha) |
野田 実 京都工芸繊維大学, 電気電子工学系, 教授 (20294168)
|
Project Period (FY) |
2018-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | 圧電体 / MEMS / 応力 / 共振 / 周波数制御 / 圧電 |
Outline of Final Research Achievements |
In order to improve the performance of vibrating MEMS devices, a dynamically tunable resonance frequency mechanism was introduced in piezoelectric MEMS devices, and the resonance behavior was investigated from theoretical and experimental perspectives. The impulse response analysis method using scanning laser Doppler vibrometer was established and the resonance behavior of the devices were clarified. A method for analyzing the natural frequency of a buckling structure was established. This analysis method was applied to the vibration of circular diaphragms, and it was confirmed that the change in natural frequency and resonance behavior agreed well with the actual measurement. As an application to ultrasonic array sensors, the control method for changing the natural frequency by a factor of two was established, and the possibility of using this method for ultrasonic measurement technology with ultra-high resolution that exceeds the conventional theoretical limit was confirmed.
|
Academic Significance and Societal Importance of the Research Achievements |
MEMSデバイスは社会生活を支える基盤技術に重要な役割を果たすようになってきており,今後更なる高性能化が期待されている。本研究では振動型MEMSデバイスの共振周波数制御において,製造プロセスの精密化に過度に依存せずに詳細に特性を設定制御できる手法を提供するとともに,これまで単一の周波数で用いられてきた振動型デバイスを,動的に周波数を変更するデバイスとして新たな機能を追加することにより,従来にないデバイスを開発する基本技術を提供するものである。
|