Project/Area Number |
18K04284
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 21060:Electron device and electronic equipment-related
|
Research Institution | Tottori University |
Principal Investigator |
ABE Tomoki 鳥取大学, 工学研究科, 准教授 (20294340)
|
Co-Investigator(Kenkyū-buntansha) |
市野 邦男 鳥取大学, 工学研究科, 教授 (90263483)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | ZnSe / 紫外アバランシェフォトダイオード / 有機-無機ハイブリッド / アバランシェフォトダイオード / 紫外線 / APD / 有機-無機ハイブリッド / 有機-無機ハイブリッド構造 |
Outline of Final Research Achievements |
The purpose of this study is development of an integration process for ZnSe-based organic-inorganic hybrid APDs, and realization of a highly sensitive practical integrated ultraviolet photodetector. First, we formed a PEDOT:PSS window layer by photolithography and succeeded in obtaining dark current characteristics equivalent to those of the conventional inkjet method. In addition, the external quantum efficiency, sensitivity, and multiplication factor were all superior to those of the conventional method. Next, a uniform electrode formation method was established by providing Ti/Au external electrodes on the surface of the PEDOT: PSS window layer, and a 15-element APD array was prototyped. As a result, the failure rate caused by poor dark current was reduced and the yield rate was improved to 70% or more.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,フォトリソグラフィによる有機窓層の形成により,APDを集積することが可能となり,従来の光電子増倍管やAPDでは成し得なかったAPDの集積化が実現可能になることを示した。また,外部電極形成によりAPDアレイの歩留り率が向上することから,実用化の可能性を示した。本APD集積化技術により,高感度・高速ラインスキャンが可能な1次元APDアレイ,微弱光撮像デバイス等の実現が期待される。また,本研究による紫外線光波帯高感度集積型APDが実用化されれば,医療分野のみならず,天文分野,科学計測分野,次世代光ディスク,火炎センサーなど多様な分野にわたり貢献できるものと考えられる。
|