Project/Area Number |
18K04560
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 24010:Aerospace engineering-related
|
Research Institution | Kyushu University |
Principal Investigator |
Bando Mai 九州大学, 工学研究院, 准教授 (40512041)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 多体問題 / 低推力 / 三体問題 / 多様体 / 惑星間軌道 / 不変多様体 / 最適制御 / スパース最適制御 / トランジット軌道 / 多体力学系 / 4体問題 / 軌道力学 |
Outline of Final Research Achievements |
In a multi-body dynamical system, a method to achieve interplanetary transition at low cost by adding artificial acceleration is considered. First, it was clarified that the position of the artificial equilibrium point and the periodic orbit can be controlled to the desired position by changing the magnitude and direction of the constant acceleration. As a simplified problem of interplanetary navigation, we considered periodic orbits around different equilibrium points and proposed a transfer method between periodic orbits using the structure of the invariant manifold that accompanies it. Furthermore, as a control theory for multi-body dynamical systems, a design method for the minimum fuel trajectory using convex optimization is proposed. Based on the proposed method, interplanetary transfer assuming continuous acceleration with extremely small thrust levels is achieved.
|
Academic Significance and Societal Importance of the Research Achievements |
2001年NASAにより打ち上げられたジェネシスミッション以来,多体力学系の性質を積極的に利用することで効率的な軌道が実現され,2体問題では実現しえない特殊かつ工学的に有用な軌道がミッションにおいて多く用いられている.しかし,これまでの多体力学系の軌道設計は天体の重力場が作る力学系の運動から条件をみたす軌道を数値的に見つけだすものであり,設計の自由度は高くなかった,そこで,設計の自由度を高めるため解析的なアプローチによって多体力学系の効果を利用した低推力宇宙機の軌道設計を行い「多体力学系の力学構造の効果を最大限利用するためには,低推力をどのように加えるのが良いのか」を明らかにすることができた.
|