Development of a numerical method of fluid-structure interaction for elucidation of fracture mechanism of structure by tsunami
Project/Area Number |
18K04665
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 25030:Disaster prevention engineering-related
|
Research Institution | Chuo University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
有川 太郎 中央大学, 理工学部, 教授 (00344317)
車谷 麻緒 茨城大学, 理工学研究科(工学野), 准教授 (20552392)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | 津波 / 流体構造連成解析 / メソスケール / 損傷モデル / 並列計算 / 固体流体連成解析 / アイソジオメトリック解析 / ひび割れ進展 / 可視化 / 破壊 |
Outline of Final Research Achievements |
In this study, we developed a solid-fluid interaction analysis system that can evaluate a series of behaviors from the generation and propagation of tsunami to the generation and propagation of cracks in structures, and the destruction of structures. For the tsunami analysis method, we applied the hybrid method developed by the authors, which uses a two-dimensional analysis method for offshore area and a three-dimensional analysis method for land area. For the analysis of concrete structures. the fragility at the interface between mortar and coarse aggregate is considered in order to simulate the generation and propagation of cracks accurately. Furthermore, in order to realize the large scale simulation, a parallel computational method is introduced. The validity of this system has been verified by comparing with the experimental results.
|
Academic Significance and Societal Importance of the Research Achievements |
本システムにより、高精度な津波浸水域の予測はもとより、津波により構造物が受ける流体力や、構造物に生じる応力・ひずみ、構造物の破壊・進展過程を精度よく評価することが可能になる。また、コンクリート構造物の設計および津波被害軽減対策の有効なツールとなり得る。さらに、バーチャルリアリティ技術による立体視に基づく可視化を用いているため、津波による破壊メカニズムをわかり易く表示可能なため、防災教育にも有効なツールとなることが期待できる。
|
Report
(4 results)
Research Products
(12 results)