Data-driven function creation of Li conductive oxide materials based on control of layer structure control by additives
Project/Area Number |
18K04700
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 26020:Inorganic materials and properties-related
|
Research Institution | Nagoya Institute of Technology |
Principal Investigator |
Tamura Tomoyuki 名古屋工業大学, 工学(系)研究科(研究院), 准教授 (90415711)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 固体電解質材料 / Liイオン電池 / 機械学習 / Li伝導性酸化物 / ペロフスカイト構造 |
Outline of Final Research Achievements |
Solid electrolytes that exhibit super-ionic conductivity comparable is indispensable for the realization of a solid-state Li-ion secondary battery. We focused on the perovskite structure LLTO, which has the highest ionic conductivity in the oxide system, and found candidates for additive elements that promote an increase in the Li conduction path inside the crystal and additive elements that promote a decrease in Li diffusion activation energy using first-principles calculation. When used as a sintered body, the grain boundary resistance is thought to cause a decrease in the performance of the entire battery. Therefore, the microscopic cause of the grain boundary resistance was clarified by Li diffusion simulation using grain boundary models. In addition, we proposed an efficient material search system by introducing information science, with a view to expanding to more general material search.
|
Academic Significance and Societal Importance of the Research Achievements |
大型Liイオン二次電池の利用拡大のためには安全性の確保が最重要課題である.酸化物材料の新たな設計及び電池材料として利用する際の粒界抵抗の原因の解明を目指した本研究成果により,全固体電池の実用化に近づいたと期待される.また,本研究で開発された多目的最適化による材料探索アルゴリズム及び高速・高精度なランダム粒界の理論計算法は電池材料に限定されず一般的な材料に展開が可能であり,Materials informaticsがさらに加速すると期待される.
|
Report
(4 results)
Research Products
(22 results)