• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Data-driven function creation of Li conductive oxide materials based on control of layer structure control by additives

Research Project

Project/Area Number 18K04700
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 26020:Inorganic materials and properties-related
Research InstitutionNagoya Institute of Technology

Principal Investigator

Tamura Tomoyuki  名古屋工業大学, 工学(系)研究科(研究院), 准教授 (90415711)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywords固体電解質材料 / Liイオン電池 / 機械学習 / Li伝導性酸化物 / ペロフスカイト構造
Outline of Final Research Achievements

Solid electrolytes that exhibit super-ionic conductivity comparable is indispensable for the realization of a solid-state Li-ion secondary battery. We focused on the perovskite structure LLTO, which has the highest ionic conductivity in the oxide system, and found candidates for additive elements that promote an increase in the Li conduction path inside the crystal and additive elements that promote a decrease in Li diffusion activation energy using first-principles calculation. When used as a sintered body, the grain boundary resistance is thought to cause a decrease in the performance of the entire battery. Therefore, the microscopic cause of the grain boundary resistance was clarified by Li diffusion simulation using grain boundary models. In addition, we proposed an efficient material search system by introducing information science, with a view to expanding to more general material search.

Academic Significance and Societal Importance of the Research Achievements

大型Liイオン二次電池の利用拡大のためには安全性の確保が最重要課題である.酸化物材料の新たな設計及び電池材料として利用する際の粒界抵抗の原因の解明を目指した本研究成果により,全固体電池の実用化に近づいたと期待される.また,本研究で開発された多目的最適化による材料探索アルゴリズム及び高速・高精度なランダム粒界の理論計算法は電池材料に限定されず一般的な材料に展開が可能であり,Materials informaticsがさらに加速すると期待される.

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (22 results)

All 2021 2020 2019 2018

All Journal Article (5 results) (of which Peer Reviewed: 3 results,  Open Access: 3 results) Presentation (17 results) (of which Int'l Joint Research: 1 results,  Invited: 4 results)

  • [Journal Article] First-principles XANES simulation for oxygen-related defects in Si-O amorphous materials2021

    • Author(s)
      Wataru Katayama, Tomoyuki Tamura, Yuya Nishino and Takakazu Hirose
    • Journal Title

      Computational Materials Science

      Volume: 196 Pages: 110555-110555

    • DOI

      10.1016/j.commatsci.2021.110555

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Prediction of formation energies of large-scale disordered systems via active-learning-based executions of ab initio local-energy calculations: A case study on a Fe random grain boundary model with millions of atoms2020

    • Author(s)
      Tomoyuki Tamura and Masayuki Karasuyama
    • Journal Title

      Physical Review Materials

      Volume: 4 Issue: 11

    • DOI

      10.1103/physrevmaterials.4.113602

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Active-learning-based efficient prediction of ab-initio atomic energy: a case study on a Fe random grain boundary model with millions of atoms2020

    • Author(s)
      Tomoyuki Tamura and Masayuki Karasuyama
    • Journal Title

      arXiv.org

      Volume: 1912.04596 Pages: 1-26

    • Related Report
      2019 Research-status Report
    • Open Access
  • [Journal Article] Multi-objective Bayesian Optimization using Pareto-frontier Entropy2019

    • Author(s)
      Shinya Suzuki, Shion Takeno, Tomoyuki Tamura, Kazuki Shitara, Masayuki Karasuyama
    • Journal Title

      arXiv.org

      Volume: 1912.04596 Pages: 1-28

    • Related Report
      2019 Research-status Report
  • [Journal Article] Knowledge-transfer-based cost-effective search for interface structures: A case study on fcc-Al [110] tilt grain boundary2018

    • Author(s)
      Yonezu Tomohiro、Tamura Tomoyuki、Takeuchi Ichiro、Karasuyama Masayuki
    • Journal Title

      Physical Review Materials

      Volume: 2 Issue: 11

    • DOI

      10.1103/physrevmaterials.2.113802

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] 粒界物性研究に向けた計算科学と情報科学の融合2020

    • Author(s)
      田村友幸
    • Organizer
      第30回格子欠陥フォーラム
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 機械学習に基づいた第一原理XANESスペクトルの予測2020

    • Author(s)
      飯沢 巧,田村 友幸, 小林 亮,尾形 修司
    • Organizer
      第30回日本MRS年次大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 粒界物性研究に向けた情報科学の導入2020

    • Author(s)
      田村 友幸
    • Organizer
      第30回日本MRS年次大会
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] ニューラル・ネットワーク力場を用いたSiOの相分離過程のMDシミュレーション2020

    • Author(s)
      小林 亮,飯沢 巧,田村 友幸
    • Organizer
      第30回日本MRS年次大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Li-Si-O材料の構造欠陥の第一原理XANESシミュレーション2020

    • Author(s)
      片山 航,田村 友幸, 小林亮,尾形 修司
    • Organizer
      第30回日本MRS年次大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 第一原理計算で探るガラス中の局所構造2019

    • Author(s)
      田村 友幸
    • Organizer
      第51回ガラス部会夏季若手セミナー 「紐解くガラス科学」
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] MI を活用した材料の粒界構造へのアプローチの現状と展望2019

    • Author(s)
      田村 友幸
    • Organizer
      産業技術総合研究所 第6回エネルギー材料アライアンス講演会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 機械学習による大規模粒界モデル中の局所エネルギー予測2019

    • Author(s)
      田村 友幸, 烏山 昌幸, 小林 亮, 竹内 一郎
    • Organizer
      日本MRS
    • Related Report
      2019 Research-status Report
  • [Presentation] 第一原理計算によるLi-Si-O系材料のXANESスペクトル2019

    • Author(s)
      西野 雄哉, 田村 友幸, 小林 亮, 尾形 修司
    • Organizer
      日本MRS
    • Related Report
      2019 Research-status Report
  • [Presentation] 機械学習を用いたFe粒界の偏析エネルギー予測2019

    • Author(s)
      飯沢 巧, 田村 友幸, 小林 亮, 尾形 修司
    • Organizer
      日本MRS
    • Related Report
      2019 Research-status Report
  • [Presentation] 機械学習による大規模粒界モデル中の局所エネルギー予測2019

    • Author(s)
      田村友幸,烏山昌幸,小林亮,竹内一郎
    • Organizer
      日本物理学会2019年秋季大会
    • Related Report
      2019 Research-status Report
  • [Presentation] Li-Si-O 系材料の表面がXANESスペクトルに与える影響2019

    • Author(s)
      西野 雄哉, 田村 友幸, 小林 亮, 尾形 修司
    • Organizer
      日本セラミックス協会東海支部
    • Related Report
      2019 Research-status Report
  • [Presentation] 機械学習による大規模粒界モデル中の局所エネルギー予測2019

    • Author(s)
      田村友幸, 烏山昌幸, 小林亮, 竹内一郎
    • Organizer
      日本物理学会第74回年次大会
    • Related Report
      2018 Research-status Report
  • [Presentation] Fast and scalable prediction of local energy at grain boundaries: Machine-learning based modeling of first-principles calculations2018

    • Author(s)
      T. Tamura, M. Karasuyama, R. Kobayashi, R. Arakawa, Y. Shinhara, and I. Takeuchi
    • Organizer
      MMM2018 (9th International Conference on Multiscale Materials Modeling)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] リチウムイオン電池用SiO負極へのLi挿入の第一原理計算2018

    • Author(s)
      西野 雄哉, 田村友幸, 小林 亮, 尾形 修司
    • Organizer
      第28回日本MRS年次大会
    • Related Report
      2018 Research-status Report
  • [Presentation] 機械学習を用いた固体電解質LLTOの効率的な安定構造探索2018

    • Author(s)
      春日井広輝, 田村友幸, 小林亮, 尾形修司
    • Organizer
      第28回日本MRS年次大会
    • Related Report
      2018 Research-status Report
  • [Presentation] 機械学習による大規模粒界モデル中の局所エネルギー予測2018

    • Author(s)
      田村友幸, 烏山昌幸, 小林亮, 竹内一郎
    • Organizer
      第28回日本MRS年次大会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi