Project/Area Number |
18K04704
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 26020:Inorganic materials and properties-related
|
Research Institution | Yamaguchi University |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | アークイメージ炉 / 超高温 / ラマン / 光触媒 |
Outline of Final Research Achievements |
The following researches were conducted in order to get closer to the realization of hydrogen energy society. (1) Experimental data supporting the relationship between photocatalytic activity and lattice strain were obtained by neutron diffraction and Raman scattering, which are sensitive to oxygen atoms. (2) Aiming for zero carbon dioxide emissions, the possibility was explored for synthesizing photocatalysts using sunlight. (3) Using an arc image furnace existing in our laboratory, the melting and freezing points were evaluated in the ultra-high temperature range up to 3000 oC with the aim of developing materials used for hydrogen turbines. Furthermore, in order to elucidate the degradation mechanism of materials in the ultra-high temperature range, an ultraviolet Raman scattering device was developed to measure at high temperatures while reducing the influence of thermal radiation.
|
Academic Significance and Societal Importance of the Research Achievements |
太陽光を利用した光触媒による水分解を用いた水素製造は、重要なエネルギー・環境問題の解決策の一つである。可視光応答型や紫外域で量子収率の高い光触媒が次々に報告されているが、(1)触媒活性能を結晶構造の観点から研究している研究例は数少ないため、この知見を得ることは学術的に意義深い。また(2)光触媒は化石燃料を用いて発電した電力を用いて合成されているのが現状であり、そのプロセスでは炭酸ガス排出量を増加させてしまう。そのため、それを太陽光で合成できれば環境問題の観点から考え社会的意義は大きい。(3)2000℃以上の超高温に達する水素タービンを構成する材料の超高温域における評価は実用上不可欠である。
|