Project/Area Number |
18K04764
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 26050:Material processing and microstructure control-related
|
Research Institution | Muroran Institute of Technology |
Principal Investigator |
SAEKI Isao 室蘭工業大学, 大学院工学研究科, 教授 (50235090)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 泳動電着 / めっき / 硬質材料膜 / 機能性膜 / 熱処理 / 複合材料膜 / 耐酸化性 / 電気めっき / 機能材料膜 / 硬質材料 / 電子材料 |
Outline of Final Research Achievements |
The electrophoretic deposition (EPD) technique enables to deposit of inorganic powders on an electrode surface with the application of an electric field in solvents where powders disperse. We examined the electrodeposition of metals in the space between EPD deposited porous power layers to obtain composite material films composed of inorganic materials and metals. The composite films were heat-treated to obtain functional compounds. In addition, we examined the EPD phenomena because the deposition mechanisms are still unclear. It was found that the EPD occurred by the transport of positively or negatively charged ions to the electrodes in the electric field. The formation of aluminum oxide, silicon carbide, and manganese oxide filled with nickel and cobalt metals with the combination of EPD and the following electroplating. The manganese oxide with cobalt film was converted into a cobalt-manganese spinel oxide by post-annealing at 800 degree in C for 4 hours.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の結果から,従来確定していなかった無機粉体の泳動電着メカニズムを明らかにすることができた。今後は泳動電着によって成膜を目指す際に浴の設計に関しての指針になると考えられる。また,本研究の独自性が高いと考えられる泳動電着とめっきの組み合わせによる緻密な複合膜は3つの粉体と2つのめっきからなる系で達成され,他の系でも同様に可能と考えれる。新しい複合材料膜の作成方法として,あるいは従来高温プロセスを必要とした超硬合金やコバルトマンガンスピネルの新しい作成方法として応用が可能であろう。さらに開発法では膜が得られ,また膜の厚さは自在にコントロールできる汎用性が今後の応用の広さにつながると考えている。
|