• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Grain boundary enhanced ductility of ultrafine grained materials

Research Project

Project/Area Number 18K04783
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 26050:Material processing and microstructure control-related
Research InstitutionDoshisha University

Principal Investigator

Miyamoto Hiroyuki  同志社大学, 理工学部, 教授 (10298698)

Co-Investigator(Kenkyū-buntansha) 湯浅 元仁  同志社大学, 理工学部, 准教授 (70635309)
Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywords強ひずみ加工 / 超微細結晶材料 / ナノ結晶材料 / 強度 / 加工性 / 二次加工性 / 強ひずみ加工法 / 超微細結晶 / ナノ結晶 / 延性 / 圧縮試験 / ECAP法 / 超微細結晶粒
Outline of Final Research Achievements

Severe plastic deformation (SPD) can fabricate high-strength materials by forming ultrafine grained (UFG) microstructure. But, in general, as in other methods, strengthening accompanies ductility loss. Low ductility, which is usually evaluated by the uniaxial tensile tests, has been attributed to low strain hardening of UFG structure where dislocation slip and its accumulation is very limited. In the present work, it is shown that the compressive ductility, or classically called malleability of UFG materials can be comparable or potentially superior to that of coarse-grained counterparts in an appropriate stress state. The high malleability of UFG materials by SPD can be attributed to the unique deformation mechanism related with non-equilibrium grain boundaries and their high damage tolerance. The present results present a prospect for expanding industrial application of UFG materials, which has been limited because of low tensile ductility.

Academic Significance and Societal Importance of the Research Achievements

構造用金属材料の高強度化は構造物の軽量化の手段であり、省資源省エネルギーに寄与できる。高強度化の強化手法の一つである結晶粒微細化はその他の方法と比較して、希少金属が多い合金元素が不要であるため、今後は重要な方法となる。一方、通常は高強度化により延性が低下する。本研究では圧縮応力下での展性は通常粒径材と比較しても遜色ないことが明らかになった。このことは加工条件をうまく選択すれば、超微細結晶材料の二次加工性を引き出すことができることを示唆している。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (3 results)

All 2020 Other

All Int'l Joint Research (1 results) Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (1 results)

  • [Int'l Joint Research] Middle East Technical University(トルコ)

    • Related Report
      2020 Annual Research Report
  • [Journal Article] Potential of High Compressive Ductility of Ultrafine Grained Copper Fabricated by Severe Plastic Deformation2020

    • Author(s)
      M.Asano, M.Yuasa, H.Miyamoto, T.Tanaka, C.Erdogan, T.Yalcinkaya
    • Journal Title

      Metals

      Volume: 10 Issue: 11 Pages: 1503-1503

    • DOI

      10.3390/met10111503

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] 強ひずみ加工法による超微細結晶金属の圧縮変形における加工性2020

    • Author(s)
      山本勇気、湯浅元仁、宮本博之
    • Organizer
      日本機械学会関西支部講演大会
    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi