Understanding for mechanism of hydrogen embrittlement using a scanning blue-laser-enhanced electrochemical microscope for hydrogen detection
Project/Area Number |
18K04784
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 26050:Material processing and microstructure control-related
|
Research Institution | Kansai University |
Principal Investigator |
HARUNA Takumi 関西大学, 化学生命工学部, 教授 (70243186)
|
Co-Investigator(Kenkyū-buntansha) |
廣畑 洋平 関西大学, 化学生命工学部, 助教 (00761264)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 水素検出用走査型レーザー電解顕微鏡 / 水素脆化 / 局在水素 / 水素検出 / 高強度鋼 |
Outline of Final Research Achievements |
Scanning Blue-Laser-Enhanced Electrochemical Microscope for Hydrogen detection (H-SBLEEM) was tried to be developed in this research in order to detect hydrogen diffusing in a steel. The system consisted of a optical microscope, an oscillator of semiconductor blue laser, an electrically-controlled X-Y stage, two small cells for electrochemical hydrogen permeation test. It was realized that an effective position resolution was 0.03 mm and a hydrogen flux at the tiny laser spot was able to be quantified. As Fe plate was subjected to the system, it was revealed that the surface without Ni-plated is more sensitive to hydrogen detection than the Ni-plated surface. Moreover, it was found that a hydrogen flux was larger inside a grain and almost no hydrogen was detected at a grain boundary.
|
Academic Significance and Societal Importance of the Research Achievements |
高強度鉄鋼材料に発生する水素脆化の機構を理解するために,材料中に不均一に移動する水素をin-situに検出可能な装置が切望されているので,本装置の開発に取り組んだ.その結果である0.03 mmの有効位置分解能と微小レーザー照射領域における単位時間当たりの水素移動量の定量化の実現は,水素脆化機構を検討する上でこれまでにない情報を与えることで学術的意義があり,水素移動経路に関する新たな情報に基づいた組織制御による水素脆化抑制技術の開発などで社会的意義があると考えられる.
|
Report
(4 results)
Research Products
(16 results)