Analysis on application mechanism and system construction of atmospheric pressure plasma-assisted coolant
Project/Area Number |
18K04786
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 26050:Material processing and microstructure control-related
|
Research Institution | Institute of Physical and Chemical Research |
Principal Investigator |
Katahira Kazutoshi 国立研究開発法人理化学研究所, 開拓研究本部, 専任研究員 (70332252)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | 大気圧プラズマ / ダイヤモンド工具 / 超精密加工 / 表面改質 / 微細加工 / フェムト秒レーザ / 光学素子 / ピコレベル加工 |
Outline of Final Research Achievements |
The feasibility of atmospheric-pressure plasma jet processing for improving cooling during SiC micro-milling was investigated. A comparison was made between SiC surfaces after milling, with and without the application of the plasma jet. The application of a plasma jet was found to result in a nano-level surface roughness. The adhesion materials on the tool surface were suppressed over long machining distances when using the plasma jet. The plasma jet treatment is believed to result in an increase in hydrophilicity due to a surface modifying mechanism, wherein OH and N radicals are created by the plasma irradiation. The plasma jet appears to be highly effective at improving both the chip formation process, by imparting hydrophilicity to the tool and workpiece surfaces, and removing surface contamination at the tool edge during machining.
|
Academic Significance and Societal Importance of the Research Achievements |
シリコン等の硬脆材料の延性モード加工に関する研究は、1995~2003年頃に国内外で多くの研究者が取り組み、学術的にも工業的にも一定の成果が得られている。しかしながら、発生するチップがツールにどのような不具合をもたらすか、とくに微細ミーリング加工における加工点の瞬時冷却・ナノサイズ切り屑の排出性能の最大化をもたらすクーラント環境の制御に着目した研究は極めて少ない。微細ツールの劣化防止や加工効率の向上、再生利用のために、生産現場で即導入可能な簡便かつ確実なクーラント技術として波及効果が期待できる。
|
Report
(4 results)
Research Products
(11 results)