Project/Area Number |
18K04793
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 26050:Material processing and microstructure control-related
|
Research Institution | Hyogo Prefectural Institute of Technology |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
大久保 雄司 大阪大学, 大学院工学研究科, 准教授 (10525786)
本田 幸司 兵庫県立工業技術センター, その他部局等, 主任研究員 (20553085)
|
Project Period (FY) |
2018-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
|
Keywords | 酸化チタン / 表面改質 / プラズマ / 光触媒 / 大気圧プラズマ / 可視光応答性 |
Outline of Final Research Achievements |
In order to give visible light responsiveness to commercially available titanium oxide films, we investigated the possibility of narrowing the band gap by expressing impurity levels through nitrogen ion doping. To produce nitrogen ions, we utilized an existing chamber-type atmospheric pressure plasma irradiation device. The plasma generated in the device is a dielectric barrier discharge excited by VHF, and it is not possible to attract positive nitrogen ions to the surface of the sample. Since applying a negative DC bias to titanium oxide, an insulating material, is also inappropriate, we considered applying an RF bias to attract positive ions to the surface of the sample. We hoped that the amount of reactive species generated would increase by superimposing an RF plasma on a VHF plasma. We also applied low-vacuum plasma irradiation, which has a long mean free path.
|
Academic Significance and Societal Importance of the Research Achievements |
市販の酸化チタン皮膜に可視光応答性を付与するため、大気圧プラズマ照射による試料表面下へ窒素イオンドープを試みた。RFバイアスを印加し正の窒素イオンを試料表面に引き寄せて、VHFプラズマ中にRFプラズマを重畳する事でプラズマ発光強度が増加したが、XPS分析では試料表面下への窒素イオンドープが確認できなかった。そこで、平均自由行程が長い低真空領域のプラズマ照射を適用した結果、窒素成分の存在が認められた。高圧・高密度のプラズマを照射するアーク放電式大気圧プラズマジェット照射装置を用いずとも、簡便な代替え手法で酸化チタン皮膜表面下への窒素イオンドープが可能になり、可視光応答性光触媒の可能性を見出した。
|