Project/Area Number |
18K04832
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 27030:Catalyst and resource chemical process-related
|
Research Institution | Saitama University |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Discontinued (Fiscal Year 2021)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
|
Keywords | 酸化物ナノレイヤー / 複合酸化物ナノ粒子 / ナノカーボン / 金属前駆体 / 電極触媒 / 複合酸化物ナノ材料 / 水電解 / LaCoo3 / 触媒 / 触媒調製 / 原子層堆積法 / 酸化物層 / 不均一系触媒 |
Outline of Final Research Achievements |
Functional materials were developed using the atomic layer deposition technique in the liquid phase. A solution containing metal precursors was dropped into nanocarbon powders and the solvent was removed, metal precursors are deposited on the nanocarbon surface on a nanoscale. For example, when tetraethyl orthosilicate was used as a precursor, a silica layer of several nanometers was obtained. We named this liquid-phase atomic layer deposition method the "precursor accumulation method" and developed the synthesis of oxide nanomaterials by this method. We found that LaCoO3 nanoparticles can be synthesized by an extremely simple process and that the obtained LaCoO3 nanoparticles are highly active as an anode catalyst for water electrolysis. The results also suggest that the precursor accumulation method may be applicable to the synthesis of various mixed-metal oxide nanoparticles.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,触媒を含む固体材料表面にナノサイズの酸化物をコーティングする手法を開発し,これを応用して複合酸化物ナノ粒子の合成を達成した。(複合)酸化物ナノ物質は触媒分野のみならず,幅広い応用範囲をもつ材料である。これまでに(複合)酸化物ナノ粒子を合成する様々な液相法が開発されているが,化学反応に依拠しているため,異分野研究者が活用することが難しかった。前駆体集積法は簡便・安価・安全なプロセスで,特殊な装置は不要である。異分野研究者でも合成できるため,化学分野のみならず応用物理(キャパシタなど)や環境処理(吸着剤利用など)の異分野にまで波及するような,学際研究への展開が期待される。
|