Basic and applied studies for the protein encapsulated oxide nano-crystal
Project/Area Number |
18K04867
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 28010:Nanometer-scale chemistry-related
|
Research Institution | Meiji University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
安井 幸夫 明治大学, 理工学部, 専任教授 (80345850)
|
Project Period (FY) |
2018-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | フェリチン / マグネタイトナノ粒子 / マグネタイト / 単結晶 / 温熱療法 / ナノ粒子 / ナノ結晶 |
Outline of Final Research Achievements |
Nano-size ferromagnetic particles produce heat in an alternating magnetic field due to magnetic energy dissipation during magnetic dipole relaxation. Apoferritin is known to produce magnetite nanoparticle in its cavity. We amid to utilize this magnetite nanoparticle for hyperthermia therapy. Magnetite nanoparticles were synthesized using several kinds of apoferritin, homo L-subunit apoferritin (L-ferritin) and hetero-assembly of H-subunit and L-subunits. The crystallinity of magnetite nanoparticles was highest in recombinant L-ferritin. Heat generation by nanoparticles in alternating magnetic field was investigated. We succeeded to increase temperature of 30mg/mL L-ferritin solution up to 20 degree-C from room temperature in alternating magnetic field of 0.5 mT, 3.0 MHz. We also synthesized apoferritin with aptamer which bind to integrin of cancer cell, and confirmed this ferritin bind to HeLa cell. We found deformation of HeLa cell after treated in altering magnetic field.
|
Academic Significance and Societal Importance of the Research Achievements |
フェリチンの殻中にマグネタイトナノ粒子単結晶を成長させるには、鉄酸化部位をもたないLサブユニットだけで構成されるようにして、できるだけ種結晶の生成を抑える必要があることを示した。無機物の単結晶はタンパク質の殻に囲まれており、生体適合性が高く医療への応用が期待できる。一つの応用としてこの粒子を高周波磁場中に置くことで発熱することを示したことは、温熱療法の発展に大きく寄与できると考えられる。特にフェリチンを遺伝子操作することで癌細胞に特異的に結合するようにできるので、磁性体ナノ粒子を集中的に癌細胞に集めることができ発熱効果が大きくなることが期待できる。
|
Report
(6 results)
Research Products
(11 results)