Investigation of electrokinetics at flowing water on doped graphene
Project/Area Number |
18K04880
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 28030:Nanomaterials-related
|
Research Institution | Tohoku University |
Principal Investigator |
OKADA Takeru 東北大学, 工学研究科, 准教授 (90616385)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | グラフェン / 固液界面 / 発電 / 動電 / 界面動電 / 流体 / 摩擦帯電 / 液滴流動 / エネルギーハーベスティング |
Outline of Final Research Achievements |
Liquid-flow-induced electricity generation from graphene-water interface has received attention for novel energy harvesting. In this research, we have obtained electricity generation from a single water droplet motion on graphene, and investigated the effect of the graphene surface condition on the electricity generation, which is controlled by heteroatom doping. As a result, nitrogen-doped graphene shows 3 times higher voltage generation compared to pristine graphene due to the doping-induced surface charging.The surface potential tuning is shown to play an important role. Furthermore, to investigate the mechanism and quantification of power density, we have fabricated micro-flow-chip which induces controlled-flow. The output performance per unit contact area between water and graphene is found to be proportional to the flow speed, with an electromotive force density of 0.0025 microvolt. The ability to quantify output density will help to construct guidelines for future applications.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では新たなエネルギー創成デバイスとして水の流動と2次元材料であるグラフェン界面における発電について研究を行った。本研究によって発電量を増大させるためにはグラフェンへの窒素ドーピングが有効であることがわかった。また、制御された流れをつくることができるマイクロ流路を用いることでグラフェン-水界面の発電システムとして等価回路を規定し、起電力は流速と界面接触面積に依存することを明らかした。本研究の成果は、力学的変換を伴わない新たなエネルギー創成を提案するものであり、将来構想の一つであるトリリオンセンサーユニバースにおいて重要な知見をもたらすものである。
|
Report
(4 results)
Research Products
(19 results)
-
-
-
-
-
-
-
-
-
-
-
-
-
[Presentation] Multiphase Flow and Interfacial Transport Phenomena at Phase and Material Boundaries2019
Author(s)
1.S. Obayashi, S. Samukawa, T. Takagi, H. Wada, T. Okada, Y. Watanabe, M. Hashimoto, T. Iijima, P. Guy, L. Udpa, Y. Hattori, H. Nagai, K. Shimoyama, M. Hirota, A. Yakeno, G. Kikugawa, A. Komiya, S. Takeda, J. Ishimoto, T. Uchimoto, H. Kosukegawa
Organizer
Eighteenth International Symposium on Advanced Fluid Information
Related Report
Int'l Joint Research
-
-
-
-
-
-