Project/Area Number |
18K04907
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 28040:Nanobioscience-related
|
Research Institution | Hokkaido University |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 生体高分子 / 機能拡張 / 表面改質 / ハイブリッド / 表面修飾 / 合成高分子 |
Outline of Final Research Achievements |
In this research, we aimed to develop functionalized proteins modifyed with biomimetic artificial polymers, which are compensated the lack of flexibility in the genetic information of proteins. In the original concept, we were going to focus on artificial polymers as the modifier, however, we expanded the concept to include biopolymers because they have advantage in polymerization in a pure physiological condition. Specifically, we developed a highly sensitive fluorescent detection system using long-chain DNAs with an intercalator dye which are elongated from an antibody for immunostaining. We have achieved (1) selection of a DNA polymerase that elongates significantly long DNA chains, (2) time-dependent elongation of long DNAs from an antibody that recognizes a cancer cell, and (3) to develop a highly sensitive fluorescent detection system by intercalating a fluorescent dye into the elongated DNAs, showing strong fluorescent signal.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で開発した生細胞の表面修飾技術を基盤として、「機能強化細胞」を創出することが可能となる。修飾する人工構造体は、合成高分子に限らず、DNAナノテクノロジーや自己組織化、MOFなどのボトムアップ技術で構築されたナノ構造体や、フォトリソグラフィーや3Dプリント、MEMSといったトップダウン技術で作製した構造体も選択し得る。これまで融合が全く考慮されていなかった研究領域を結び合わせることにより、細胞工学の分野でブレイクスルーを起こすことも期待できる。さらに、遺伝子工学的アプローチでは達成できない機能を付与した「機能強化細胞」を作製し産業的に利用することで、広く社会に貢献できる。
|