• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Band structure control of multi-band gap semiconductors and its application to solar cell

Research Project

Project/Area Number 18K04956
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 30010:Crystal engineering-related
Research InstitutionUniversity of Yamanashi

Principal Investigator

NABETANI Yoichi  山梨大学, 大学院総合研究部, 教授 (30283196)

Co-Investigator(Kenkyū-buntansha) 松本 俊  山梨大学, 大学院総合研究部, 教授 (00020503)
村中 司  山梨大学, 大学院総合研究部, 准教授 (20374788)
Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords太陽電池 / 格子歪 / マルチバンドギャップ半導体
Outline of Final Research Achievements

In a multi-bandgap semiconductor having an intermediate band in the forbidden band, light can be absorbed through the intermediate band to generate free carriers. In this research, oxygen (O), which forms a localized level, is added to ZnTe to increase the density of the localized level and control the intermediate band.
ZnTeO alloy semiconductors were grown by molecular beam epitaxy, and its oxygen composition was analyzed by X-ray diffraction. We also revealed that oxygen forms a localized level in ZnTe by the photoluminescence method. Since ZnTe and ZnO, which form a ZnTeO alloy semiconductor, differ in interatomic distance by about 25%, strain occurs inside the crystal. The strain energy distribution was investigated by calculation at the atomic level.

Academic Significance and Societal Importance of the Research Achievements

太陽電池は燃料を必要とせず、太陽光を照射するだけで半永久的に利用できるため、身近な電力源としての役割は大きい。しかし現在実用化されているSi系やCuInGaSe(CIGS)系半導体太陽電池の効率は十数パーセントであり、さらなる高効率化は必須である。現在、高効率半導体は開発されているが、その製造方法やコストの問題から普及が困難であるが。本研究で提案する太陽電池は大量生産に適している。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi