Project/Area Number |
18K04961
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 30010:Crystal engineering-related
|
Research Institution | Gakushuin University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
古川 義純 北海道大学, 低温科学研究所, 名誉教授 (20113623)
|
Project Period (FY) |
2018-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 結晶成長速度 / 氷結晶 / 不凍糖タンパク質 / 過冷却水 / 自発的振動 / ラングミュア吸着等温式 / 遅延時間 / 不純物効果 / 時間依存したラングミュア吸着等温式 / 遅延時間効果 / 自発振動 / 氷 |
Outline of Final Research Achievements |
We proposed the new model taking account of a time delay of adsorption to explain the formation of self-oscillatory growth of an ice crystal without a change of external conditions. We consider the dimensionless time-dependent Langmuir adsorption equation including time delay. In this equation, the area of the ice interface not covered by impurities depends on the number of AFGP impurity molecules taking into account the time delay. This means that during the adsorption process of the AFGP molecule, its structural change takes an adsorption time corresponding to the delay time. By considering this process, adsorption-damped oscillations of AFGP impurity molecules occur, indicating the possibility of oscillation growth. If the growth rate of ice crystal is a function with respect to the number of absorbed AFGP molecules, the oscillatory behavior of growth rate occurs. We found the oscillatory period is a few times the time delay, that is, the period increases with the time delay.
|
Academic Significance and Societal Importance of the Research Achievements |
気温が氷点下では氷となる環境下でもある種の魚や昆虫は、体温が氷点下になっても凍りつくことがない。そこでは特殊なタンパク質(不凍タンパク質や不凍糖タンパク質)が小さな氷の結晶と結合して氷の成長を制御することが、それらの生物内で確認されている。もしこの制御がなければ成長する氷は細胞の組織を破壊してしまうため、氷を融かしても組織が元通りになることはない。この不凍(糖)タンパク質が氷の結晶成長をコントロールする仕組みを解明すれば、食品の冷凍保存や臓器移植への技術活用などに貢献することが期待され、その成果はこれらの応用へ理論的バックグラウンドを提供できる。
|