• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Elucidation of AlN conversion layer formation mechanism by nitrogen plasma and single crystal growth by reactive sputtering

Research Project

Project/Area Number 18K04962
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 30010:Crystal engineering-related
Research InstitutionShizuoka Institute of Science and Technology

Principal Investigator

Ozawa Tetsuo  静岡理工科大学, 理工学部, 教授 (90247578)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords反応性RFスパッタ / AlN / InAlN / 窒化物半導体 / 結晶成長 / 混晶 / 単結晶 / 単結晶成長 / 反応性スパッタリング / AlN/Al2O3 / RF反応性スパッタ / サファイア / 窒素プラズマ / ナノロッド / InAlN混晶
Outline of Final Research Achievements

In this study, we succeeded in forming an AlN film with AlN (0002) orientation even by the rf-reactive sputtering method using the AlN conversion layer formation mechanism by nitrogen plasma. Furthermore, in the chamber during the AlN growth process. The dependence of pressure and nitrogen flow ratio was clarified.
In addition, for the first time, we were able to propose an AlN deposition model for Al2O3 and AlN conversion layer substrates, albeit qualitatively. In addition, by using the reactive RF sputtering method, InAlN mixed crystals could be crystal-grown on the sapphire substrate. Furthermore, it was found that the crystallinity can be improved by sputtering the InAlN mixed crystal on the AlN conversion layer.

Academic Significance and Societal Importance of the Research Achievements

反応性RFスパッタによる育成技術の開発により、低電力でも基板近傍のスパッタ粒子密度を増加させる技術を創生することで、InxGa1-xN、InxAl1-xN、GaxAl1-xNのような窒化物混晶半導体育成技術に応用でき、窒化物半導体製造における安価、安全な次世代高効率多接合型太陽電池材料の基礎製造技術は大変重要であり、提案した技術で成し遂げられる。また、他の分野の波及効果として、自動車部品等の軽量化で使用されているAl系合金における窒化膜コーティングにも応用でき、材料強度の向上にも寄与できる可能性がある。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi