Project/Area Number |
18K05048
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 32010:Fundamental physical chemistry-related
|
Research Institution | Osaka University |
Principal Investigator |
Teramoto Takahiro 大阪大学, 放射線科学基盤機構, 特任講師(常勤) (40467056)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2018: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
|
Keywords | 超高速分光 / 太陽電池 / 超短パルスレーザー / 有機半導体 |
Outline of Final Research Achievements |
Organic materials are attracting attention for their unique flexibility, ability to be spray-coated, and other properties that are not possible with inorganic materials, such as cost containment due to their liquid form. In organic semiconductor materials, excitons are generated by light irradiation. As the relaxation dynamics of excitons, charge recombination or charge separation of electron-hole pairs occurs on a time scale of a few fs to ps. The branching ratio of this charge separation process mainly governs the efficiency of photoelectric conversion. If the excess energy of the electronic transition is dissipated in the nuclear oscillation, the photoelectric conversion efficiency decreases. In order to clarify the details of the initial process of photoexcitation in organic semiconductors, we have developed a transient photocurrent spectroscopy system using ultrashort laser pulses.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では可視超短パルスレーザーを用いた過渡光電流分光システムの開発を行なった。それをDTDCPB、C70をそれぞれアクセプター、ドナーとした有機薄膜太陽電池デバイスに適応した。その結果過渡光電流信号に480cm-1の分子振動が変調として現れることが明らかとなった。この振動モードはDTDCPB内のベンゼン環の面外偏角振動モードでありC70に近づこうとするモードである。このように光電流の効率化あるいは損失と関係する分子振動モードを特定することによって、より光電変換効率の高い新規材料の合成に対する指針を提示することができる。
|