Project/Area Number |
18K05055
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 32020:Functional solid state chemistry-related
|
Research Institution | Tohoku University |
Principal Investigator |
Kosaka Wataru 東北大学, 金属材料研究所, 助教 (70620201)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 多孔性配位高分子 / 多孔性磁石 / 吸着誘起物性変換 / 磁性変換 / 層状磁性体 / 分子磁性体 / MOF / 金属有機複合骨格 / ガス応答 / 集積型金属錯体 / 二酸化炭素 / 酸素 / 層状分子磁石 |
Outline of Final Research Achievements |
The primal objectives of this study, "creation of a series of compounds of porous coordination polymer magnets" and "reversible control of the long-range magnetic order by gas adsorption/desorption" have been achieved. Through this study, the magnetic response of layered porous magnet upon guest adsorption via various mechanisms were clarified. Especially, ON/OFF-switching of magnet using “electronic spin of oxygen” is one of the great achievements. In addition, the fact that carbon dioxide, one of the most common gases around us, can also be used for ON/OFF-switching of magnet is unexpected and surprising result. Useful techniques and knowledge in future research on phase transition phenomena, such as the method of single crystal structure analysis under controlled atmosphere and the cooperation with quantum chemistry calculation based on the obtained crystal structure etc., were established.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究にて創製に取り組んだ材料「多孔性磁石」は,従来からよく知られた電場・磁場・光・圧力などの物理的な刺激とは異なり,「分子吸脱着」という化学的な刺激により駆動する材料である.従って,化学物質の性質を磁化という物理量に換える,「化学―物理変換」を可能にする材料と言い換えることもできる.酸素や二酸化炭素は極めてありふれた分子であるが,本研究の成果は,小分子を受け入れる側の材料のチューニングにより,様々な小分子の出し入れによる物性制御が可能であることを示唆しており,基礎・応用の両面から意義深いと考えられる.今後は「化学―物理変換」の考えのもと,多成分認識などへと展開する予定である.
|