Project/Area Number |
18K05056
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 32020:Functional solid state chemistry-related
|
Research Institution | Utsunomiya University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
加藤 紀弘 宇都宮大学, 工学部, 教授 (00261818)
奈須野 恵理 宇都宮大学, 工学部, 助教 (80709329)
佐藤 高彰 信州大学, 学術研究院繊維学系, 教授 (20373029)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 金ナノ粒子 / 生体高分子 / 界面活性剤 / 相間移動 / 界面制御 / X線小角散乱法 / 核磁気共鳴法 / X線小角散乱 / ゲル |
Outline of Final Research Achievements |
Methods for controlling structure and dispersion property of gold nanoparticles (AuNP) coated by biological polymers or surfactants were found through evaluation of particle size, dispersion stability, and so on, depending on experimental parameters. Chitosan, alginic acid, some lectins, and etc. were used as the biological polymers for the former particles, while some polyoxyethylene alkylamine surfactants with different hydrophobic-hydrophilic balance were employed for the latter particles. Agglomeration ability, which was thought due to interactions between the AuNPs and bacteria or extracellular polysaccharides, was found for some biological polymer-coated AuNPs. For the surfactant-coated AuNPs, efficient phase-transfer approaches from aqueous to organic solvents were found, and a phase-transfer mechanism was proposed.
|
Academic Significance and Societal Importance of the Research Achievements |
生体高分子で被覆した種々のAuNPの合成や分子種に依存した生体試料との相互作用の違い、ポリオキシエチレンアルキルアミン型界面活性剤被覆AuNPの有機溶媒中への効率的な相間移動法と相間移動メカニズムの提案、ならびにAuNPの作製条件に依存した形態学的変化や分散安定性の変化など、本研究を通じて得られた成果は、新たな知見を多く含み、AuNPが関わる学術分野の発展に寄与するとともに、バイオテクノロジーやエレクトロニクスなどにおけるAuNP利用技術の展開につながるものと期待される。
|