Project/Area Number |
18K05061
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 32020:Functional solid state chemistry-related
|
Research Institution | Saga University |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 自律振動 / ハイドロゲル / 光応答 / 光-熱変換 / 温度応答性ゲル / 光駆動 / 自律拍動 / 温度ヒステリシス / 光駆動型拍動 / アクティブマター |
Outline of Final Research Achievements |
Light-heat conversion type photoresponsive gels can autonomously oscillate by light irradiation. This is because the light-heat conversion ability of the shrunk gel is lower than normal. The temperature hysteresis of the volume transition (difference between contraction temperature and swelling temperature) is important for the gel beating. In this study, we attempted to prepare a hydrogel capable of autonomous pulsation under sunlight. We formed various gels and irradiated them with white light. In all the prepared gels, a rapid temperature rise, reaching the contraction transition temperature (36 °C), and a shrinkage of the gel were observed under an LED light. Some conditions shrink the gel and lowering the gel temperature, and then promoting re-swelling. These conditions then take the small re-raise in temperature. These re-shrinkage conditions were close to 20 ° C as environmental temperature. This result was in good agreement with that obtained by the numerical simulation.
|
Academic Significance and Societal Importance of the Research Achievements |
成果である「太陽光や排熱からエネルギーを取り出すアクティブマター」を構築したことは、光や熱エネルギーは、物質供給のできない閉じた系(物質のやり取りがなくても) でエネルギーのやり取りができるので、物質の供給手段がない・できない場所やイベントでの活用が期待できる。例えば、人間によって物質が供給できない極限空間や閉鎖空間(低温地域、工場の高温場所、宇宙空間、砂漠)や災害時の電源や供給燃料の供給が不可能なイベントで作動できる「エンジン」(動力を発生させる機関)を実現するための基礎技術を発展させるに至った。
|