Project/Area Number |
18K05102
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 33020:Synthetic organic chemistry-related
|
Research Institution | Kanazawa University |
Principal Investigator |
UKAJI YUTAKA 金沢大学, 物質化学系, 教授 (80193853)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 1,3-双極子 / ニトロン / アゾメチンイミン / 硫黄イリド / ジアゾ化合物 / カルベン / イソシアニド / 一酸化炭素 / 1,4-双極子 / 複素環 / 光学活性 |
Outline of Final Research Achievements |
1,3-Dipoles are useful chemical species which produce 5-membered heterocycles via concerted [3+2] cycloaddition. On the other hands, carbenes have unique reactivities such as addition and insertion reactions. In the present project, hybridization of 1,3-dipoles and carbenes was planned to generate designable novel efficient dipolar species. Nitrones and azomethine imines for example are selected as 1,3-dipoles and carbene-type species such as sulfur ylides and diazo-compounds were tried to be hybridized. Several novel reactions were developed as follows: A unique and efficient formation of 3,6-dihydro-2H-1,2-oxazines starting from α,β-unsaturated nitrones with dimethylsulfoxonium methylide has been achieved. In addition, unexpected rearrangement of hydride was developed in the reaction of nitrones derived from glyoxylic acid with sulfoxonium ylide. Metal free insertion-type transformation of diazo methane with C,N-cyclic-N′-acyl azomethine imines was achieved.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,1,3-双極子とカルベンという異なる化学種の融合によりハイブリッド高機能活性種を自在に発生させる分子技術を確立し,その活性種を活用する革新的分子変換法を開拓することを目的とし,各種ハイブリッド活性種の発生を実現でき,特徴ある複素環合成等に展開できた。得られた新規複素環化合物は従来にない骨格であるものもあり,新規生理活性発現等新機能発現が十分期待できること,また環式非環式問わず各種有用化合物の合成中間体としても非常に有用であることから,将来的には新規構造の医農薬品や機能性材料の設計,これらの製造プロセスの開発などの分野への発展展開を通して,持続可能な社会構築への貢献が期待できる。
|